GPLUS EDUCATION

Date: Time: **CHEMISTRY** Marks: **HYDROCARBONS Single Correct Answer Type** Thermal decomposition of 1. CH₂NMe₃OH gives Which of the following is not a petroleum product? b) Paraffin wax a) Petrol c) Bees wax d) Kerosene A knocking sound is produced more in the engine when the fuel contains mainly: 3. a) n-alkanes c) CO b) CO₂ d) Lubricating oil Reaction of HBr with propene in presence of peroxides gives: a) Isopropyl bromide b) 3-bromopropane c) Allyl bromide d) *n*-propyl bromide The next higher homologue of C₆H₁₄ is: 5. b) C₇H₁₆ a) C_7H_{14} c) C_7H_{10} d) C_7H_{12} The reaction conditions used for converting 1,2-dibromopropane to propylene are b) KOH, water Δ c) Zn, alcohol/ Δ a) KOH, alcohol/ Δ d) Na, alcohol Δ A gas formed by the action of alcoholic KOH on ethyl iodide, decolourises alkaline KMnO₄. The gas is b) CH₄ c) C_2H_2 a) C_2H_6 d) C_2H_4 Alkyne, C₇H₁₂, when reacted with alkaline KMnO₄ followed by acidification with HCl gives a mixture of $(CH_3)_2CHCOOH + CH_3CH_2COOH$, The alkyne C_7H_{12} is a) 3-hexyne b) 2-methyl-2-hexene c) 2-methyl-3-hexene d) 3-methyl-2-hexyne The relationship between acetylene and benzene is comparable to the relationship between propyne and a) Dimethyl benzene b) Neoprene c) Propyl benzene d) Mesitylene 10. Complete oxidation of one mole of an alkane forms 3 moles of CO₂. The alkane is a) CH₄ b) C_2H_6 c) C_3H_8 d) C_6H_{14} 11. The ozonolysis of ethylene, acetylene and propylene respectively gives: a) HCHO, CHO—CHO and CH₃CHO + HCHO b) CHO—CHO, HCHO and CH3CHO c) HCHO + CH₃CHO, CHO— CHO and HCHO d) CHO—CHO, CH3CHO + HCHO and HCHO The reaction, $CH_2 = CH_2 + CH_3COCl \xrightarrow{AlCl_3}$ gives the product: a) CH3COCH2CH2Cl b) CH₃ CH₂ CH₂Cl c) CH₃COCH₂.CH₂COCH₃ d) ClCH2CH2Cl 13. Alkyl halides react with dialkyl copper reagents to give

b) Alkanes

d) Alkenes

a) Alkenyl halides

c) Alkyl copper halides

14.	The gas which is used for the artificial ripening of fruits is:				
	a) C_2H_6	b) C ₂ H ₂	c) C ₂ H ₄	d) Marsh gas	
15.	CH_3 — $C \equiv CH$ reacts with 1	HCI to give:			
		b) 1,1-dichloropropane	c) 1,2-dichloropropane	d) 1-chloropropene	
16.	$CH_3CH_3 + HNO_3 \xrightarrow{675 \text{ K}} 3$)			
	a) CH ₃ CH ₂ NO ₂		b) $CH_3CH_2NO_2 + CH_3N$	0_{2}	
	c) $2CH_3NO_2$		d) $CH_2 = CH_2$	2	
17.	Which of the following is p	roduced when coal is sub		ation?	
		b) Ethane	c) Acetylene	d) Coal gas	
18.	The product of the following		, ,	, 0	
	$CH_3C \equiv C. CH_2CH_3 \frac{(i) O}{(ii) Hydro}$	3 . 2			
	$CH_3C = C. CH_2CH_3 $ (ii) Hydro	olysis			
	a) $CH_3COOH + CH_3COCH_3$				
	b) $CH_3COOH + CH_3CH_2CO$	ОН			
	c) $CH_3CHO + CH_3CH_2CHO$				
	d) $CH_3COOH + CO_2$				
19.	Methyl bromide heated with	-		15 16 1	
20	•	b) Ethane	c) Ethylene	d) Methanol	
20.	Aqueous solution of an o	rganic compound, 'A' o	n electrolysis liberates a	cetylene and CO ₂ at a	
	node. 'A' is		1) D		
	a) Potassium acetate		b) Potassium succinate		
0.4	c) Potassium citrate	S-46 3	d) Potassium maleate		
21.	The reaction of alkanes wit			1) D	
22	· -	b) Cl ₂	c) I ₂	d) Br ₂	
22.	Which of the following is u a) 1-butene	b) 2-hexene	c) 1-pentene	d) All of these	
23			c) 1-pentene	uj Ali oi tilese	
201	Which of the statement is wrong for alkanes?a) Most of the alkanes are soluble in water				
	-				
	b) Their density is always less than waterc) At room temperature some alkanes are liquid, some solid and other are gases				
	d) All alkanes burn	some anames are nquie	i, some some and other ar	e gases	
24.	Propane cannot be prepa	ared from which reactio	on?		
	a) $CH_3 - CH = CH_2 \xrightarrow{B_2H_6}$,	b) $CH_3CH_2CH_2I \xrightarrow{P}$		
	c) $CH_3CH_2CH_2COONa \frac{Na}{r}$	OH/CaO,∆ →	d) None of the above		
25.	Nitrating mixture is				
	a) Fuming nitric acid				
	b) Mixture of conc. H ₂ SO	₄ and conc. HNO ₃			
	c) Mixture of nitric acid a		oride		
	d) None of the above	,			
26.	Cyclohexene on reaction	with OsO ₄ followed by	reaction with NaHSO ₃ gi	ves	
		b) <i>trans</i> – diol	c) Epoxy	d) Alcohol	
27.	Al ₄ C ₃ on hydrolysis yield		- 1 0	-	
			c) Hydrogen gas	d) Carbon dioxide	
28.	The compounds P , Q and	•			

where separately subjected to nitration using $\mathrm{HNO_3}/\mathrm{H_2SO_4}$ mixture. The major product formed in each case respectively, is

- 29. Which of the following is not a mixture of hydrocarbons?
 - a) Candle wax
- b) Kerosene
- c) Vegetable oils
- d) Paraffin oil

30. $C_8H_{10}(A) \xrightarrow{O_3/H_2O} \operatorname{acid}(B)$ $C_3H_5MgBr(C) \xrightarrow{CO_2,H_3O^+} acid B$ Identify A, B and C

$$\text{a)} \hspace{-0.2cm} \bigcirc \hspace{-0.2cm} \text{C} \hspace{-0.2cm} = \hspace{-0.2cm} \text{C} \hspace{-0.2cm} , \hspace{0.2cm} \bigcirc \hspace{-0.2cm} \text{COOH,} \hspace{0.2cm} \bigcirc \hspace{-0.2cm} \text{MgBr}$$

$$CH_2=CH-CH_2MgBr$$

- c) $CH_3 CH_2 CH_2 CH_3$, $CH_3CH_2CH_2COOH$, $CH_2 = CH CH_2MgBr$
 - d) CH₃CH₂CH₂CH₃,
- 31. Which of the following has the maximum heat of hydrogenation?

- $CH_3CH_2CH_3 \xrightarrow{400-600^{\circ}C} X + Y, X \text{ and } Y \text{ are}$
 - a) Hydrogen and methane

b) Hydrogen and ethylene

c) Ethylene and methane

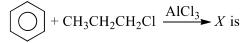
- d) Any of these
- 33. Position of double bond in alkenes is identified by
 - a) Ozonolysis

b) Bromine water

c) Ammonical silver nitrate

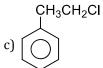
d) None of these

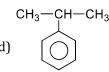
34. Consider the following reaction


$$H_3C-C\equiv C-CH_3 \xrightarrow{I/II/III} \xrightarrow{H_3C} C\equiv C < H$$

- I. H_2/Ni_2B
- II. $H_2/Pd CaCO_3$ in quinoline
- III. Na/NH₃ or LiAIH₄

This reaction takes place by


- a) I or II
- b) I or III
- c) II or III
- d) I, II or III
- 35. Which of the following reagent can distinguish between 1-butyne and 2-butyne?
 - a) Aqueous NaOH
 - b) Bromine water
 - c) Fehling's solution
 - d) Ammoniacal AgNO₃
- 36. CH₄ is formed when:
 - a) Sodium acetate is heated with soda lime
 - b) Iodo methane is reduced
 - c) Aluminium carbide reacts with water
 - d) All of the above
- 37. Reaction of HBr with propene in the presence of peroxide gives
 - a) *iso*-propyl bromide b) 3-bromo propane
- c) Allyl bromide
- d) *n*-propyl bromide


38. Predict structure of *X* in following reaction

- 39. The middle oil fraction of coal-tar distillation contains:
 - a) Benzene
- b) Anthracene
- c) Naphthalene
- d) Xylene
- 40. On halogenation, an alkane (C_5H_{12}) gives only one monohalogenated product. The alkane is
 - a) *n*-pentane

b) 2-methyl butane

c) 2, 2-dimethyl propane

- d) Cyclopentane
- 41. Acrylic emulsion in paints is a polymer of:
 - a) $CH_2 = CH COOCH_3$
 - b) $CH_3 CH = CH COOCH_3$

c)
$$CH_2 = CH - COOH$$

d)
$$CH_2 = C(CH_3) - COOCH_3$$

- 42. A hydrocarbon X adds on one mole of hydrogen to give another hydrocarbon and decolourised bromine water. X react with $KMnO_4$ in presence of acid to give two mole of the same carboxylic acid. The structure of Xis:
 - a) $CH_3CH = CHCH_2CH_2CH_3$
 - b) $CH_3CH_2CH = CHCH_2CH_3$
 - c) $CH_3CH_2CH_2$ — $CH = CHCH_3$
 - d) $CH_2 = CH CH_2CH_2CH_3$
- 43. An anaesthetic narcylene is commercial name of:
 - a) C_2H_4

b) C_2H_2

- c) CHCI₃
- d) ether
- 44. By which one of the following compounds both CH₄ and CH₃ CH₃ can be prepared in one step?
 - a) CH₃I
- b) CH₃OH
- c) CH₃CH₂I
- d) C_2H_5OH
- 45. What volume of methane (NTP) is formed from 8.2 g of sodium acetate by fusion with sodalime?
 - a) 10 litre
- b) 11.2 litre
- c) 5.6 litre
- d) 2.24 litre
- 46. When methyl iodide is treated with sodium in ethereal solution, it gives
 - a) Methane

b) Ethane

c) Methyl sodium iodide

- d) Sodium methoxide
- 47. 2-methylpentene 2 on ozonolysis will give:
 - a) Only propanal
 - b) Propanal and ethanal
 - c) Propanone-2 and ethanal
 - d) Propanone-2 and propanal
- 48. The reaction,

$$2RC \equiv CCu \xrightarrow{(CH_3COO)_2Cu} R - C \equiv C - C \equiv C - R$$

- a) Eglinton's reaction
- b) Glaser reaction
- c) Gomberg-Beckmann's reaction
- d) Leuckart reaction
- 49. 2-Hexyne gives *trans*-2-hexene on treatment with:
 - a) Li/NH₃
- b) Pd/BaSO₄
- c) LiAlH₄
- d) Pt/H_2
- 50. Which of the following will give three mono-bromo derivatives?
 - a) CH₃CH₂CH₂CH(CH₃)CH₃

b) $CH_3CH_2C(CH_3)_2CH_3$

c) CH₃CH₃(CH₃)CH (CH₃)CH₃

- d) All the above can give
- 51. The reagent for the following conversion

$$Br \longrightarrow H \longrightarrow H$$
 is/are :

- a) Alc. KOH
- b) $\frac{\text{Alc. KOH followed by}}{\text{NaNH}_2}$
- c) $\frac{\text{Aqueous KOH followed}}{\text{by NaNH}_2}$ d) $\text{Zn/CH}_3\text{OH}$
- 52. In a reaction if half of the double bond is broken and two new bonds are formed, this is a case of:
 - a) Elimination
- b) Addition
- c) Displacement
- d) Rearrangement

- 53. Which represents a cyclic alkane?

a)

- c) C_8H_{10}
- d) C_8H_{12}

54. $CH_3 - CH_2 - CH_2 - CH_3 \xrightarrow{AlCl_3} Product$

Product in the above reaction is

$$CH_3 - CH - CH_2 - CH_3$$

b) CH3

 $CH_3 - CH - CH_3$

c) $CH_3 - CH_2 - CH_2$

d) All of these

55. According to Huckel's rule an aromatic compound must possess

a) $(4n + 1)\pi$ -electrons

b) $(4n + 2)\pi$ -electrons

c) $4n \pi$ -electrons

d) $(4n + 3)\pi$ -electrons

56. Acetylene gives:

- a) White ppt. with AgNO₃ and red ppt. with Cu₂Cl₂
- b) White ppt. with Cu₂Cl₂ and red ppt. with AgNO₃
- c) White ppt. with both
- d) Red ppt. with both
- 57. 1,1,2,2-tetrabromoethane on heating with Zn powder in alcohol finally gives:
 - a) Methane
- b) Ethane
- c) Ethyne
- d) Ethene

58. The carbide which reacts with water to form ethyne is

a) CaC₂

b) SiC

- c) Mg_2C_3
- d) Al_4C_3

59. What is the product when 2-butyne is treated with liquid NH₃ in presence of lithium?

- a) *n*-butane
- b) *cis*-2-butene
- c) trans-2-butene
- d) 1-butene

60. Ph— C = C— CH₃
$$\xrightarrow{\text{Hg}^{2+}/\text{H}^{+}}$$
 A. A is

d)
$$H_3C$$
 OH

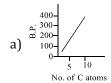
61. 1-butyne on reaction with hot alkaline KMnO₄ gives:

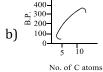
- a) CH₃CH₂CH₂COOH
- b) $CH_3CH_2COOH + CO_2$
- c) CH₃CH₂COOH
- d) $CH_3CH_2COOH + HCOOH$

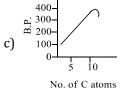
62. Which statement is not correct in case of ethane?

- a) It can be catalytically hydrogenated
- b) When burnt produces CO₂ and H₂O
- c) It is homologue of isobutane
- d) It can be chlorinated with chlorine
- 63. CH₃COCH₃ can be converted to CH₃CH₂CH₃ by the action of
 - a) HNO_3
- b) HIO_3

- c) H_3PO_3
- d) HI


64. When ethyl chloride and alcoholic KOH are heated, the compound obtained is


a) C_2H_4


- b) C_2H_2
- c) C_6H_6
- d) C_2H_6

65. Which of the following will react with sodium metal?

- a) Ethene
- b) Propyne
- c) But-2-yne
- d) Ethane
- 66. When the boiling point of the first ten normal alkanes are plotted, the graph looks like:

67. Which is generally used as reducing agent in organic chemistry?

- a) Zn+HCl
- b) $Zn + CH_3COOH$
- c) Zn/Hg + HCl
- d) Na + C_2H_5OH

68. Alkynes can be reduced to alkenes by hydrogenation in presence of:

- a) Raney Ni
- b) Anhy. AlCl₃

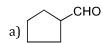
d) Lindlar's catalyst

69. Which reagent distinguishes ethylene from acetylene?

	a) Aqueous alkaline permanganate				
	b) Chlorine dissolved in carbon tetrachloride				
	c) Ammoniacal cuprous chloride d) Concentrated sulphuric acid				
70.	By heating tetraethyl ammonium hydroxide, the pro-	oduct formed are:			
	a) C_2H_4				
	b) (C ₂ H ₅) ₃ N				
	c) H ₂ 0				
	d) All of these				
71.	Addition of ICl on propene gives the product:) ou cuolou i	l) cu cuclou cl		
72		c) CH ₃ CHClCH ₂ I	d) CH ₃ CHClCH ₂ Cl		
12.	Which of the following alkenes gives on acetald		D 0.1		
	a) Ethene b) Propene	c) 1-butene	d) 2-butene		
73.	In the following sequence of reactions, the alke	ne affords the compound	'B'		
	$CH_3CH = CHCH_3 \xrightarrow{O_3} A \xrightarrow{H_2O} B$				
	The compound B is				
	a) CH ₃ CH ₂ CHO b) CH ₃ COCH ₃	c) CH ₃ CH ₂ COCH ₃	d) CH ₃ CHO		
74.	$CH_3CH = CH - CH_3 + CH_2N_2 \rightarrow A$; A is				
	CH ₃ CH-CH-CH ₃ a) CH ₃ N ₂	CH ₃ -CH-CH-CH ₅ b) CH ₂	3		
	a) $\dot{C}H_3 \dot{N}_2$	b) \widetilde{CH}_2			
	c) Both (a) and (b)	d) None of these			
75.	Direct fluorination of alkanes is not made because:	., ., ., ., ., ., ., ., ., ., ., ., ., .			
	a) Reaction does not occur				
	b) Alkane fluorides are not formed				
	c) Reaction occurs violently				
	d) None of the above	MOTTAT			
76.	On monochlorination of <i>n</i> -pentane, the number of i	somers formed is:			
	a) 4 b) 3	c) 2	d) 1		
77.	Which of the following is the predominant prod	luct in the reaction of HO	Br with propene?		
	a) 2-bromo-1-propanol	b) 3-bromo-1-propanol			
	c) 2 – bromo – 2 – propanol	d) 1-bromo-2-propanol			
78.	Acetylene is prepared industrially by passing electr	ic discharge through graphi	ite electrodes in the		
	atmosphere of:				
	a) Air b) N ₂	c) H ₂	d) CO ₂		
79.	The reaction of an aromatic halogen compound	l with an alkyl halide in pi	resence of sodium in		
	ether is called				
	a) Sandmeyer's reaction	b) Wurtz reaction			
	c) Kolbe reaction	d) Wurtz-Fittig reaction	1		
80.	How many isomeric forms of pentane exist?				
	a) 3 b) 2	c) 5	d) 6		
81.	Alkanes mainly show reactions involving:				
	a) Carbonium formation				
	b) Ionic elimination				
	c) Ionic formation				
6 =	d) Heat/photochemical substitution	<u>.</u>			
82.	Ozonolysis of an organic compound A produces		ehyde in equimolar		
	mixture. Identify A from the following compour	nds.			

				Gplus Educati	
	a) 2-methyl-1-pentene		b) 1-pentene		
	c) 2-pentene		d) 2-methyl-2-pentene		
83.	Using anhydrous AlCl ₃ as ca	atalyst, which one of t	he following reactions p	roduce	
	ethylbenzene(PhEt)?				
	a) $H_3C - CH_2OH + C_6H_6$		b) $CH_3 - CH = CH_2 + C_6$	$_{5}H_{6}$	
	c) $H_2C = CH_2 + C_6H_6$		d) $H_3C - CH_3 + C_6H_6$	· ·	
84.	On vigorous oxidation by alka	lline permanganate solu	tion $(CH_2)_2C = CH - CH_2C$	CHO gives:	
	он он	. 0		O	
	a) $\mid \mid$ $(CH_3)_2C-C-CH-CH_2CH_3$				
	CH_3 CH_3				
	b) >CO+CH ₃ CH ₂ COOH				
	CH ₃ /				
	CHOH+CH ₃ CH ₂ CH ₂	ОН			
	c) CH_3 $CHOH+CH_3CH_2CH_2$	2011			
	d) CH ₃				
	CO+CH ₃ CH ₂ CHO				
85.	The compound that is most re	nactiva tovvarda alactron	shilic nitration is		
05.	-	-	c) benzoic acid	d) nitrobenzene	
86.			•	-	
001	One mole of a symmetrical alkene on ozonolysis gives two moles of an aldehyde having a molecular mass of 44 u. The alkene is				
			c) 2-butene	d) Ethene	
87.	The conversion of propene	The state of		a) Efficie	
0,1		1 1 1 11	c) hydrolysis	d) Dehydrogenation	
88	When n -hexane/ n -heptane is				
001			c) Benzene, Toluene	d) None of these	
89.				-	
	If $20cm^3$ of methane (CH ₄) is burnt using $50cm^3$ of oxygen. The volume of the gases left after cooling to room temperature will be:				
		$70 \mathrm{cm}^3$	c) 30cm ³	d) 50cm ³	
90.	An alkane of mol. weight 72 gi	ives on monochlorinatio	on only one product. Name	the alkane:	
	a) 2-methylbutane b) <i>n</i>	<i>n</i> -pentane	c) 2,2-dimethylpropane	d) None of these	
91.	The number of disubstituted p	products of benzene is			
	a) 2 b) 3		c) 4	d) 5	
92.	The treatment of $R'MgX$ with	=			
	,	R'H	c) $R - R$	d) $R - R'$	
93.	Electrolysis of an aqueous s		•		
			c) Ethyne	d) Propane	
94.	Propyne on passing through	= =			
			c) Mesitylene	d) None of these	
95.	Among the following, the com	=	= =		
0.6			c) toluene	d) chlorobenzene	
96.	Propylene on hydrolysis wi	_			
o=			c) Ethyl alcohol	d) Butyl alcohol	
97.	What is the product formed				
	a) CH ₃ COCl b) 0	ClCH ₂ CHO	c) Cl ₂ CHCHO	d) ClCH ₂ COOH	

98. When CaC_2 was hydrolysed a gas was obtained. It had a garlic odour due to phosgene present as impurity. The gas was passed through ammoniacal solution of $\mathrm{Cu_2Cl_2}$, a red ppt. was obtained. The gas was:


c) Acetylene

b) Propyne

a) Ethylene

d) Ethane

99.	Alkenes undergo			
	a) Addition reactions			
	b) Substitution reactions			
	c) Both (a) and (b)			
	d) None of these			
100	Aromatic compound ar	nong other things should	l have a π -electron cloud	containing $(4n+2)\pi$
	electrons where, n can	not be		
	a) $\frac{1}{2}$	b) 3	c) 2	d) 1
101	2			
101	Polymer of propyen is:	h) Dolarth on o	a) Dameana	d) Masitulana
102	a) Polyethylene	b) Polythene	c) Benzene	d) Mesitylene
102	=	as the least octane number' b) Cetane		o d) n hontano
102	a) Octane		c) 2,2,4-trimethylpentan	e uj n-neptane
103	Name the reaction C_3H_6 a) Alkylation	b) Cracking	c) Hydrogenation	d) Dehydrogenation
104	•	nake roads is a solid know	, , ,	u) Dellyul ogellation
104	a) Pitch	b) Paraffin wax	c) Coal	d) None of these
105		n of alkanes in the absen		a) None of these
105	a) Cracking	b) Oxidation	c) Combustion	d) Hydrogenation
106	•		c) Combustion	a) Hyurogenation
100	The conditions for aron		1	
		clouds of delocalised π -e	electrons	
	b) Molecule must conta	$\sin (4n + 2)\pi$ -electrons		
	c) Both (a) and (b)	S. A.	>	
	d) None of the above			
107	C_2 — C_3 bond length in bu	ıt-1,3-diene is:		
	a) 1.46Å	b) 1.20Å	c) 1.39Å	d) 1.34Å
108	For synthesis of 1-bute	ne, CH3Mgl should be tre	eated with	
	a) Propene	b) 2-chloropropene	c) Allyl chloride	d) Ethyl chloride
109	The highest boiling poi	nt is expected for		
	a) <i>n</i> -butane		b) <i>iso</i> -octane	
	c) <i>n</i> -octane		d) 2,2,3,3-tetramethyl k	outane
110	When butane-1 is mixed	with excess of bromine, the	e expected reaction produc	
	a) Hydrogen bromide	b) Butylene gas	c) 1,2-dibromobutane	d) Perbromobutane
111.	An alkene having mole	cular formula C ₉ H ₁₈ on o	zonolysis gives 2, 2-dime	=
	butanone. The alkene is			7 1 1
	a) 2,2,2-trimethyl-3-he		b) 2,2,6-trimethyl-3-he	xane
	c) 2,3,4-trimethyl-2-he		d) 2,2,4-trimethyl-3-he	
112	•	n diazomethane in presence	•	xene
112,	a) Cyclopropane	b) Methyl cyclopropane	c) Butane	d) Butene
113			table one-step reaction from	•
110	a) CH ₃ I	b) C ₂ H ₅ I	c) CH ₃ OH	d) C ₂ H ₂ OH
114		·	$O_4 + H_2SO_4$) of but-1-yne w	
111	a) CH ₃ CH ₂ COCH ₃	via oxymerearation (1150)	b) CH ₃ CH ₂ CH ₂ CHO	vould be
	c) $CH_3CH_2CHO + HCHO$		d) $CH_3CH_2COOH + HCOC$	ЭН
115		on followed with action of		·
110	a) Alkanol-2	b) Alkanol-1	c) Alkanal	d) Alkanone
116		,	,	,
	on ozonolys	sis gives		

d) None of these

117. The compound 'C' in the following reaction is

$$C_7H_7 \xrightarrow{3Cl_2/\Delta} A \xrightarrow{Br_2/Fe} B \xrightarrow{Zn/HCl} C$$

a) o-bromotoluene

b) *m*-bromotoluene

c) p-bromotoluene

- d) 3-bromo-2,4,6-trichlorotoluene
- 118. Iodination of alkane is made in presence of:
 - a) KMnO₄
- b) HgO or HIO₃
- c) $K_2Cr_2O_7$
- d) None of these

- 119. Pick out the wrong statement.
 - a) Toluene shows resonance

is non-aromatic.

- c) The hybrid state of carbon in carbonyl group is sp^2 .
- d) The hyperconjugative effect is known as no bond resonance.
- 120. An alkene on vigorous oxidation with KMnO₄ gives only acetic acid. The alkene is
 - a) $CH_3CH_2CH = CH_2$
- b) $CH_3CH = CHCH_3$
- c) $(CH_3)_2C = CH_2$
- d) $CH_3CH = CH_2$
- 121. A hydrocarbon reacts with hypochlorous acid to give 2-chloroethanol. The hydrocarbon is:
 - a) Methane
- b) Ethylene
- c) Acetylene
- d) Ethane

- 122. The angle strain in cyclobutane is
 - a) 24°44′
- b) 29°16′
- c) 19°22′
- d) 9°44′
- 123. During chlorination of methane usually a mixture of all the chlorinated products, i. e., methyl chloride, methylene dichloride, chloroform and carbon tetrachloride are obtained. What will happen, if we use excess of Cl₂ in this reaction?
 - a) Only methyl chloride will be formed
 - b) Only chloroform will be formed
 - c) Only CCl₄ will be formed
 - d) Only methylene dichloride will be formed
- 124. Aromatization of *n*-heptane and *n*-octane gives respectively:
 - a) Toluene, ethyl benzene
 - b) Ethyl benzene, toluene
 - c) Toluene, benzene
 - d) Benzene, ethyl benzene
- 125. Which of the following organic compounds exhibit acidic character?
 - a) $H_3C C \equiv CH$
- b) $H_3C C \equiv C CH_3$ c) $H_2C = CH_2$
- d) $H_3C CH_3$

- 126. Sodium formate on heating with soda lime gives:
 - a) CH₄

b) CO₂

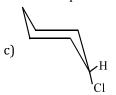
c) H_2

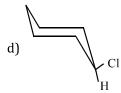
- d) All of these
- 127. Which of the following can be used for preparation of propane?
 - a) $CH_3CH = CH_2 \xrightarrow[2.AgNO_3/NaOH]{1.B_2H_6}$

c) $CH_3CH_2CH_2I \xrightarrow{HI/\Delta 150^{\circ}C}$

- 128. The marsh gas detector used by miners works on the principle of:
 - a) Difference in the rates of diffusion of gases
 - b) Avogadro's hypothesis
 - c) Gay-Lussac's law of gaseous volumes
 - d) Berzelius hypothesis

- 129. The compound with highest boiling point.
 - a) n-nexane


b) n-pentene


c) 2,2-dimethyl propane

- d) 2-methyl butane
- 130. The most stable conformation of chlorocyclohexane at room temperature is:

- 131. Acetylene is not used in making:
 - a) Textile yarn
- b) PVC

- c) Glucose
- d) Drugs
- 132. An aromatic compound 'X' with molecular formula C_8H_{10} produces on nitration one mononitro derivative and three dinitro derivatives. Compound 'X' would be
 - a) Ethyl benzene
- b) m-xylene
- c) o-xylene
- d) p-xylene

- 133. That acetylene is a linear molecule is shown by
 - a) Its $C \equiv C$ bond distance being 1.21 Å
- b) Its C H bond distance being 1.08 Å
- c) ItsH C C bond angle being 180°
- d) All of the above
- 134. Benzene on treatment with a mixture of conc. HNO₃ and conc. H₂SO₄ at 100°C gives
 - a) Nitrobenzene
- b) *m*-dinitrobenzene
- c) *p*-dinitrobenzene
- d) o-dintrobenzene

- 135. Which of the following differs with the other three?
 - a) Naphthalene
- b) Ethylene
- c) Toluene
- d) Xylene
- 136. A saturated hydrocarbon is shown by C_nH_{10} The value of carbon atom 'n' in this compound is:

b) 4

c) 5

- d) 6
- 137. Which of the following reactions will yield, 2, 2-dibromopropane?
 - a) $CH_3 C \equiv CH + 2HBr \rightarrow$

b) $CH_3CH = CHBr + HBr \rightarrow$

c) $CH \equiv CH + 2HBr \rightarrow$

- d) $CH_3 CH = CH_2 + HBr \rightarrow$
- 138. $CH_2 = CH_2$ reacts with HCI to form:
 - a) CH₂CH₂Cl₂

- d) CH₃CHCl₂
- 139. Reduction of carbonyl compounds to alkanes with NH₂—NH₂ and NaOH is called:
 - a) Clemmensen reduction
 - b) Wolff-Kishner reduction
 - c) Wurtz's reaction
 - d) Pondrof Verley reduction
- 140. The compound which cannot decolourise alkaline KMnO₄:
 - a) Acetylene
- b) Ethanol
- c) Ethanal
- d) Ethane
- 141. Which one of the following can distinguish propyne from propene?
 - a) Br₂ water
- b) Ammoniacal AgNO₃
- c) Aq. KMnO₄
- d) Dil. H₂SO₄
- 142. The reaction of ethene with oxygen in presence of a silver catalyst gives:
 - a) Ethylene glycol
- b) Ethylene epoxide
- c) Glyoxal
- d) Acetaldehyde
- 143. 4-nitrotoluene $\xrightarrow{\text{K}_2\text{Cr}_2\text{O}_7}$ product. The product in the reaction is
 - a) Benzoic acid
- b) 4-nitrobenzene
- c) 4-nitrobenzoic acid d) 2-nitrobenzoic acid

144. Which of the following is Wurtz-Fittig reaction?

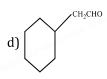
c)
$$O_3H + H_2O \xrightarrow{130-150^{\circ}C} + H_2SO_2$$

$$d) \bigcirc \xrightarrow{\mathsf{MgBr}} \overset{\mathsf{O}}{\underset{+ \text{ CICCH}_2\mathsf{CH}_3}{\mathsf{H}_3}} \longrightarrow \bigcirc \overset{\mathsf{COCH}_2\mathsf{CH}_3}{\longrightarrow}$$

- 145. Ozonolysis can be used to detect:
 - a) 1-butene and 2-butene
 - b) Branched alkene from unbranched alkene
 - c) Location of double bond/triple bond in carbon chain
 - d) All are correct

146.
$$CH_2$$
=CH-CH=CH₂ + $\|$ CH-COOH $\longrightarrow X$

Product X is obtain by reaction R.X and R are


Diels-Alder

147.
$$C \equiv CH$$

Hydroxylation of in presence of $H_2SO_4/HgSO_4$ gives:

a) $COCH_3$

b) CH_2CHO

- 148. In which of the following will Kharasch effect operate?
 - a) $CH_3CH_2CH = CH_2 + HCI$
 - b) CH_3CH_2 — $CH = CH_2 + HBr$
 - c) $CH_3CH = CH CH_3 + HBr$
 - d) $CH_3CH_2CH = CH_2 + HI$
- 149. In the following reaction, A and B, respectively are

$$A \xrightarrow{\mathsf{HBr}} \mathsf{C}_2 \mathsf{H}_5 \mathsf{Br} \xrightarrow{B} A$$

- a) C_2H_4 , alc. KOH/Δ
- b) C_2H_5Cl , aq. KOH/Δ c) CH_3OH , aq. KOH/Δ d) C_2H_5 , PBr_3

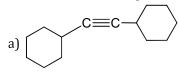
150. Addition of HBr on:

$$CH \equiv C-CH_2-CH = CH_2$$
 and $CH \equiv C-CH = CH_2$

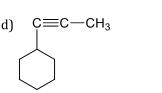
Separately gives:

$$CH \equiv C - CH_2 - CHBr - CH_3$$

and
$$CH_2 = C - CH = CH$$


$$\begin{array}{ccc} CH = C - CH_2 - CHBr - CH_2 \\ b) & \text{and } CH_2 = C - C \\ \end{array}$$

D) Br
$$\mid$$
 Br $\cap CH = C - CH_2 - CH - CH_3$ and


- d) None of the above
- 151. Compound C₆H₁₂is an:
 - a) Aliphatic saturated compound
 - b) Alicyclic compound
 - c) Aromatic compound

- d) Heterocyclic compound
- 152. A lead compound known as....is used as anti-knock in petroleum industry to increase the efficiency of fuel consumption
 - a) $(C_2H_5)_4$ Pb
- b) $Pb(CH_3COO)_2$
- c) $(C_2H_5)_2Pb$
- d) PbCO₃

153. Which of the following form alkynide?

$$c)$$
 $c \equiv c - c$

- 154. Which of the following reagents when heated with ethyl chloride, forms ethylene?
 - a) Aqueous KOH
- b) Zn/HCl
- c) Alcoholic KOH
- d) HI
- 155. Reduction of 2-methyl-1-bromopropane with metal and acid gives:
 - a) Butyl bromide
- b) *n*-butane
- c) Isobutene
- d) None of these

- 156. Dehydration of 2-butanol yield
 - a) 1-butene
- b) 2-butene
- c) 2-butyne
- d) Both (a) and (b)

- 157. Which statement is correct?
 - a) Knocking decreases the efficiency of an internal combustion engine
 - b) Knocking cannot be eliminated completely by adding anti-knock compounds
 - c) The higher the octane number, the better is the quality of fuel
 - d) All of the above

158. CH₃C=CHCH₃

The treatment of CH_3 with NaIO₄ or boiling KMnO₄ produces

KMnO₄ produces

a) $CH_3COCH_3 + CH_3COOH$

b) $CH_3COCH_3 + CH_3CHO$

c) $CH_3CHO + CO_2$

- d) CH₃COCH₃ only
- 159. Which of the following reagents will be able to distinguish between 1-butyne and 2-butyne?
 - a) NaNH₂
- b) HCl

c) 0_2

- d) Br_2
- 160. 2-chloro-3-methylbutane is treated with sodium in etherial solution, then it will give
 - a) 2,4-dimethylhexane

b) 3,5-dimethylhexane

c) 2,3,4,5-tetramethylhexane

- d) 2,6-dimethyloctane
- 161. The hydrocarbon which can react with sodium in liquid ammonia is
 - a) $CH_3CH_2CH_2C \equiv CCH_2CH_2CH_3$
- b) $CH_3CH_2C \equiv CH$

c) $CH_3CH = CHCH_3$

- d) $CH_3CH_2C \equiv CCH_2CH_3$
- 162. Which of the following is incorrect? The members of the homologous series of alkanes?
 - a) Are all straight chain compounds
 - b) Have the general formula C_nH_{2n+2}
 - c) Show a regular gradation in physical properties

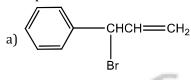
- d) Have similar chemical properties
- 163. Ammoniacal cuprous chloride will give red precipitate with which one of the following?
 - a) $CH_3 C \equiv C CH_3$

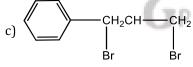
b) $CH_3 - CH = CH_2$

c) $CH_3 - C \equiv CH$

d) $CH_3 - CH = CH - CH_3$

- 164. Mustard gas is:
 - a) CH₄


b) C_2H_4


- c) CH₂Cl—CH₂—S—CH₂-d) None of the above
- 165. During pyrolysis of alkane, C—C bond rather than C—H bond break because:
 - a) C—C bond is reactive site in alkane
 - b) C—H bond is reactive site in alkane
 - c) Bond energy of C—C is lower than C—H bond
 - d) Energy of activation of C—C bond is very high
- 166. A mixture of CH₄ and steam on passing over nickel suspension on alumina at 800°C gives:
 - a) CO only
- b) H₂ only
- c) CO and H₂
- d) None of these
- 167. A compound $X(C_5H_8)$ reacts with ammoniacal AgNO₃ to give a white precipitate, and on oxidation with hot alkaline $KMnO_4$ gives the acid, $(CH_3)_2CHCOOH$. Therefore, X is
 - a) $CH_2 = CHCH = CHCH_3$ b) $CH_3(CH_2)_2C \equiv CH$
- c) $(CH_3)_2CH C \equiv CH$ d) $(CH_3)_2C = C = CH_2$
- 168. What are the products obtained by the ozonolysisof $RCH = CR_1R_2$?
 - a) $R_1CH_2CH_2R_2$
- b) R_2 CO
- c) $R_1 COR_2$
- d) None of these

169. Following compound is treated with NBS

$$CH_2CH$$
 $CH_2 + NBS$ \longrightarrow A

Compound formed *A* is

- 170. The structural formula of the compound which yields ethylene upon reaction with zinc:
 - a) CH₂Br—CH₂Br
- b) CHBr₂—CHBr₂
- c) CHBr=CHBr
- d) None of these
- 171. An alkyne combines with a conjugated diene to give an unconjugated cycloalkadiene. The most likely title of this reaction is
 - a) Schotten-Baumann reaction

- b) Hofmann-bromamide reaction
- c) Pinacol-Pinacolone rearrangement
- d) Deils-Alder reaction
- 172. The most important method of preparation of hydrocarbons of lower carbon number is:
 - a) Pyrolysis of higher carbon number hydrocarbons
 - b) Electrolysis of salts of fatty acids
 - c) Sabatier-Senderen's reaction
 - d) Direct synthesis
- 173. The number of carbon atoms in hydrocarbons of kerosene is in the range of:
 - a) $C_5 C_7$
- b) $C_{12} C_{16}$
- c) $C_1 C_4$
- d) C_{17} — C_{20}
- 174. A mixture of 1-chlorobutane and 2-chlorobutane when treated with alcoholic KOH gives
 - a) 1-butene

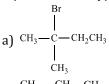
b) 2-butene

c) iso-butylene

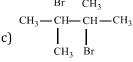
- d) Mixture of 1-butene+2-butene
- 175. Which of the following react with Cl₂ and Br₂ at room temperature and in the absence of diffused sunlight to produce dihalogen derivatives?
 - a) Cyclobutane
- b) Cyclopentane
- c) Cyclohexane
- d) All of these

- 176. A compound (X) on ozonolysis followed by reduction gives an aldehyde C₂H₄O and 2-butanone, compound (X) is
 - a) 3-methyl pentene-2 b) 3-methyl pentene-3 c) 3-methyl hexene-3 d) 3-ethyl pentene-3
- 177. An octane number 100 is given to:
 - a) *n*-hexane
- b) Iso-octane
- c) Neopentane
- d) Neo-octane
- 178. When butene-1 is mixed with HBr, the major reaction product is:
 - a) 1,2-dibromobutane
- b) 1-bromobutane
- c) 2-bromobutane
- d) None of these
- 179. Which cycloalkane has the lowest heat of combustion per CH₂ group?
 - a) Cyclopropane
- b) Cyclobutane
- c) Cyclopentane
- d) Cyclohexane
- 180. The order of appearance of the following with rising temperature during the refining of crude oil is:
 - a) Kerosene, gasoline, diesel
 - b) Diesel, gasoline, kerosene
 - c) Gasoline, diesel, kerosene
 - d) Gasoline, kerosene, diesel
- 181. $CH_3 C \equiv C CH_3 \xrightarrow{NaNH_2} X$; what is X?

a)
$$CH_3 - CH_2CH_2CH_3$$
 b) $CH_3CH_2C \equiv CH$


b)
$$CH_3CH_2C \equiv CH$$

c)
$$CH_3$$
 $C=CH_2$

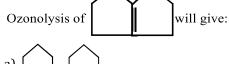

d)
$$CH_2 = C = CH - CH_3$$

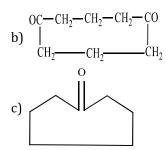
182. H_3C —CH—CH= CH_4 +HBr $\longrightarrow A$

A(Predominantly) is:

b) CH₂

- 183. The reagent *X* in the reactions


(CH₃)₃CCH=CH₂
$$\xrightarrow{X}$$
 $Y \xrightarrow{\text{NaBH}_4}$ (CH₃)₃C-CH—CH₃
OH


- a) H_30^+
- b) $(CH_3COO)_2Hg$
- c) OH⁻

d) HCOOH

- 184. Cetane number of diesel fuel increases with the addition of:
 - a) Decane
- b) Hexadecane
- c) Pentane
- d) Methyl naphthalene
- 185. Distillation of acetone with concentrated sulphuric acid gives
 - a) Diacetone alcohol
- b) Mesityl oxide
- c) Mesitylene
- d) Propene-2-ol

186.

- d) None of the above
- 187. Soda lime is used extensively in decarboxylation reaction to obtain alkanes. Soda lime is:
 - a) NaOH
- b) NaOH and CaO
- c) CaO

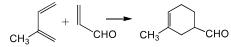
- d) Na₂CO₃
- 188. Incomplete combustion of petrol or diesel oil in automobile engines can be best detected by testing fuel gases for the presence of:
 - a) Carbon dioxide and water vapour
 - b) Carbon monoxide
 - c) Nitrogen oxide
 - d) Sulphur dioxide
- 189. A compound with molecular formula C₄H₆may contain:
 - a) A double bond
 - b) Two triple bonds
 - c) All single bonds
 - d) Two double bonds or a triple bond
- 190. Mustard gas is a
 - a) Oil gas
- b) Poisonous gas
- c) Fuel gas
- d) Life gas

- 191. Which of the following is not true?
 - a) Acetylene has a linear structure
 - b) Alkynes undergo electrophilic addition, but not nucleophilic addition reactions
 - c) Alkenes show geometrical isomerism
 - d) There is sp^3 -hybridisation in propane
- 192. Pure CH₄ can be obtained by:

c)
$$CH_3COONa + Sodalime d$$
 Electrolysis of $HCOONa(aq.)$

193. Viscosity coefficients of some liquids are given below,

9	
Liquid	ηin
	millipoise
	at 30°C
$CH_3(CH_2)_3CH_3$	2.11
$CH_3(CH_2)_4CH_3$	2.89
$CH_3(CH_2)_5CH_3$	3.68


The order of viscosity coefficient of the liquids,

is:

- a) The same
- b) (A)>(B)>(C)
- c) (A) < (B) < (C)
- d) (A)>(B)=(C)

- 194. Action of *R*Mg *X* with vinyl chloride gives:
 - a) Alkane
- b) Alkyne
- c) Alkene
- d) All of these

195. The following reaction is called

a) Michael addition reaction

b) Diels-alder reaction

c) Wolff-Kishner reaction

- d) None of the above
- 196. Which branched chain isomer of the hydrocarbon with molecular mass 72u gives only one isomer of mono substituted alkyl halide?
 - a) Neopentane
 - b) Isohexane
 - c) Neohexane
 - d) Tertiary-butyl chloride
- 197. A meta directing functional group is
 - a) -COOH
- b) -OH
- c) $-CH_3$
- d) -Br
- 198. Which one of the following compounds is prepared in the laboratory from benzene by a substitution reaction?
 - a) Glyoxal

b) Cyclohexane

c) Acetophenone

- d) Hexabromocyclohexane
- 199. Only two isomeric monochloro derivatives are possible for:
 - a) *n*-pentane
- b) 2,4-dimethylpentane
- c) Benzene
- d) 2-methylpropane

- 200. Butene-1 may be converted to butane by reaction with
 - a) Zn HCl
- b) Sn HCl
- c) Zn Hg
- d) Pd/H_2

201. Identify 'B' in the following reaction,

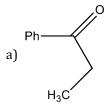
$$CH_{2} = CH_{2} + HCl \xrightarrow{Anhy.AlCl_{3}}$$

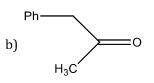
$$A + 2[H] \xrightarrow{Zn-Cu} B + HCl$$

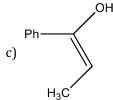
a) CH₄

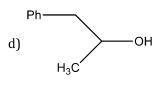
b) C_2H_6

- c) C₂H₅Cl
- d) C₂H₅OH
- 202. The reaction of toluene with chlorine in presence of ferric chloride gives predominantly
 - a) benzoyl chloride


b) *m*-chlorotoluene


c) Benzyl chloride


d) o-and p-chlorotoluene


203. Ph $-C \equiv C - CH_3 \xrightarrow{Hg^{2+}/H^+} A$

The product A is

- 204. During Wurtz reaction, which of the following is sometimes also obtained because of decomposition of free radicals?
 - a) Alkynes
- b) Alkenes
- c) CO₂

- d) Alkyl halide
- 205. Which of the following reagents cannot be used to locate the position of triple bond in $CH_3 C \equiv C CH_3$?
 - a) Br₂

b) 0_3

c) Cu⁺

d) KMnO₄

- 206. Decarboxylation of malonic acid gives:
 - a) CH₄

- b) C_2H_6
- c) C_3H_8

d) None of these

207. Br
Br
NaI/Acetone
Product

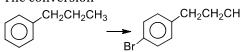
The product of reaction is:

b)

- 208. Which compound will react with an aqueous solution of $Ag(NH_3)_2^+OH^-$?
 - a) $CH_3 C \equiv C CH_3$
- b) $CH_3CH_2C \equiv CH$
- c) $CH_3 CH_3$
- d) $CH_2 = CH_2$
- 209. Reactivity of tertiary H, secondary H and primary H towards elimination is:
 - a) Tert. > sec. > pri.
- b) Sec. > tert. > pri
- c) Sec. > pri. > tert.
- d) Pri. > sec. > tert.

- 210. 1-butyne on hydration gives
 - a) Butyn-1, 2-diol
- b) Butan-1-ol
- c) Butan-2-ol
- d) Butan-2-one
- 211. The hydration of propyne in the presence of $HgSO_4/H_2SO_4$ produces
 - a) HCHO
- b) CH₃CHO
- c) CH₃CH₂CHO
- d) CH₃COCH₃

- 212. The most reactive halogen in the halogenation of alkanes is:
 - a) Cl₂


b) Br₂

c) I₂

- d) All are equal
- 213. A gas decolourised by $KMnO_4$ solution but gives no precipitate with ammoniacal cuprous chloride is
 - a) Ethane
- b) Methane
- c) Ethene
- d) Acetylene

- 214. Indane is:
 - a) Commercial propane
 - b) Commercial isobutene and propane mixture
 - c) Methane, propane mixture
 - d) Butane, ethane mixture
- 215. Which reacts with ammoniacal AgNO₃?
 - a) Propyne
- b) 2-butyne
- c) 1,3-butadiene
- d) Pentene

216. The conversion

Can be effected using

a) Br₂/CCl₄

b) Br_2/H_2O

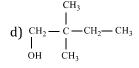
c) Br₂/Fe

- d) Br/benzoyl peroxide
- 217. Which of the following cycloalkane gives open chain compound, when reacts with bromine?
 - a) Cyclopropane
- b) Cyclopentane
- c) Cyclohexane
- d) Cyclooctane
- 218. The addition of HBr to an alkene in the presence of peroxide is the example of
 - a) Electrophilic addition reaction
 - b) nucleophilic addition reaction
 - c) Free radical addition reaction
 - d) The formation of carbocation as an intermediate
- 219. On mixing a certain alkane with chlorine and irradiating it with UV light, it form one monochloro alkane.

The alkane could be

- a) Neopentane
- b) Propane
- c) Pentane
- d) Isopentane
- 220. Which of the following statements is true for ethane, ethene and acetylene?
 - a) Acetylene is the weakest acid and has the longest C H bond distance
 - b) Acetylene is the strongest acid and has the shortest C H bond distance
 - c) Ethane is the strongest acid and has the longest C H bond distance

			opius zuucutio		
d) Ethene is the strongest acid and has the shortest C — H bond distance					
221. On cracking petrol we get: a) CH_4					
b) C ₃ H ₆					
c) Both of the above					
d) $CH_3 + CH_4 + C_2H_6$ -	+ alcohols				
	nverted into ethane by he	ating it in ether medium	n with		
a) Al	b) Zn	c) Na	d) Cu		
	gas to reaction mixture of ch		•		
a) Accelerates the reac	-	morme and mediane (pil	otoenemiear emormation).		
b) Retards the reaction					
c) Has no effect on the					
	etard the reaction depending	upon the amount of oxyg	gen		
224. Order of reactivity of	C_2H_6 , C_2H_4 and C_2H_2 is				
a) $C_2H_6 > C_2H_4 > C_2$		b) $C_2H_2 > C_2H_6 > C_2$	H_4		
c) $C_2H_4 > C_2H_2 > C_2$	_	d) All are equally rea	•		
, , , , , , , ,	on of cellulose material prese	• •			
a) H ₂	b) CH ₄	c) 0 ₂	d) N ₂		
226. The reaction, $CH_3Br +$	Na →Product, is called	· -	, <u>-</u>		
a) Perkin reaction	b) Levit reaction	c) Wurtz reaction	d) Aldol condensation		
227. Meso-dibromobutan	e on debromination gives				
a) <i>trans-</i> 2-butene	b) <i>cis-</i> 2-butene	c) 1-butene	d) 1-butyne		
228. $CH \equiv CH + HBr \rightarrow X$, product Xis	2			
a) Ethylene bromide	CL	b) Vinyl bromide			
c) Bromo ethane	7	d) Ethyledine bromic	de		
	dium salt of butanoic acid giv				
a) <i>n</i> -hexane	b) Isobutane	c) Butane-1	d) Ethylene		
230. The compound formed	when silver powder is heate	ed with chloroform:			
a) CH ₄	b) C ₂ H ₂	c) C_2H_4	d) C_2H_6		
231. The reaction of toluene	e with chlorine in the presenc	ce of ferric chloride gives	predominantly		
a) m -chlorotoluene		b) Benzyl chloride			
c) Benzoyl chloride		d) o and p -chlorotolue	ne		
232. Which of the followir	ng will yield <i>trans</i> product	from butyne?			
a) LiAlH ₄	b) Na/Liq. NH ₃	c) NaBH ₄	d) Ni catalyst		
233. A hydrocarbon of mo	lecular formula C ₆ H ₁₀ rea	cts with sodamide and	the same on ozonolysis		
followed by hydroger	n peroxide oxidation gives	two molecules of carb	oxylic acids, one being		
optically active. Then	ı, the hydrocarbon may be				
a) 1-hexyne		b) 3-hexyne			
c) 3-methyl-1-pentyr	ne	d) 3,3-dimethyl-1-bu	tyne		
234. Which of the following is not correct about the reaction,					
$CH_2 = CH_2 + Br_2 \frac{Nal(ac)}{r}$	¹⁾ ?				
		rCH ₂ I			
	a) The products formed are ${ m CH_2BrCH_2Br}$ and ${ m CH_2BrCH_2I}$ b) The reaction follows polar mechanism				
=	readily in solution and is cat	alysed by inorganic halid	les		
d) CH ₂ ICH ₂ I is formed	-	-			
235. During ozonolysis of Cl	$H_2 = CH_2$ if hydrolysis is mad	de in absence of Zn dust t	the products formed are:		
а) НСНО	b) HCOOH	c) CH ₃ OH	d) CH ₂ OHCH ₂ OH		
226 The formation of huter	o on hoating C. U. Lwith Na i	in proconce of other is co	ntaminated with impunities o		

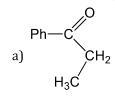

			Opius Luucution			
a) C ₂ H ₄	b) C ₃ H ₆	c) CH ₄	d) None of these			
237. When sodium propio	nate is heated with soda-	lime, the product forme	d is			
a) Methane	b) Ethane	c) Ethene	d) Ethyne			
238. Isopropyl bromide or	n Wurtz reaction gives					
a) Hexane		b) Propane				
c) 2,3-dimethyl butar	ne	d) <i>neo-</i> hexane				
239. Which one of the follo						
a) <i>n</i> -butane	b) 1-butyne	c) 1-butene	d) <i>Iso-</i> butene			
•			e and chlorine in the presence			
of sunlight is:	alu not at an be formeu uur	ing the reaction of methan	e and chiorme in the presence			
a) CH ₃ Cl	b) CHCl ₃	c) CH ₃ CH ₃	d) CH ₃ CH ₂ CH ₃			
241. When isopropyl magne	-		u) 611361126113			
a) Propane	b) <i>n</i> -butane	c) Isobutene	d) Isobutyl alcohol			
242. The monosodium salt of	•	•	uj isobutyi alconor			
a) $CH \equiv CCOOH$	b) CH \equiv CCOONa	c) CH \equiv CCONa	d) None of these			
243. Propyne on passing t	=	•	a) None of these			
		gives 	d) None of these			
			a) None of these			
a) 💮	b) (c)				
	101					
244. $(CH_3)_3$ CMgCl on read	tion with D ₂ O produces					
a) (CH ₃) ₃ COD	b) $(CD_3)_3CH$	c) $(CH_3)_3CD$	d) $(CD_3)_3CD$			
245. n-hexadecane (cetane)	has cetane number:					
a) 100	b) Zero	c) 90	d) 110			
246. Acetylene does not re	eact with					
a) Na	b) ammoniacal AgNO	₃ c) HCl	d) NaOH			
247. What volume of CH ₄ at	NTP is formed when 20.5 g	g of CH ₃ COONa is treated w	vith sodalime?			
a) 4.4 litre	b) 2.2 litre	c) 3.2 litre	d) 5.6 litre			
248. The hydrocarbon whic	h decolourizes alkaline KM1	nO ₄ solution, but does not	give any precipitate with			
ammoniacal silver nitr	ate is:					
a) Benzene	b) Acetylene	c) Propyne	d) Butyne-2			
249. What is the molecula	r formula of the product :	formed when benzene is	reacted with ethyl chloride			
in presence of anhyd	rous aluminium chloride	?				
a) C ₈ H ₁₀	b) C ₆ H ₆	c) C ₈ H ₈	d) C ₆ H ₅ Cl			
250. Which will give $CH_2 =$	· · ·	, , ,	<i>y</i> 0 3			
a) $CH_2Br-CBr = CH_2$						
$^{\alpha}$) $CH_2Br - CBr = CH_2$	——→ K-CO-(aa)					
b) $CH \equiv C - CH_2 - COC$	$OH \xrightarrow{\mathbf{K}_2 \cup \mathbf{G}_3(uq)}$					
c) $2CH_2 = CH - CH_2I^2$	Na →					
d) None of the above						
	251. A dibromo derivative of an alkane reacts with sodium metal to form an alicyclic hydrocarbon. The					
derivative is			yy ar o car o om 1110			
a) 1,1-dibromopropa	ne	b) 2,2-dibromopropa	ne			
c) 1,2-dibromoethan						
c) 1,2-dibromoethane d) 1,4-dibromobutane 252. By coaltar distillation which is not obtained?						
-		a) Haarny ail	d) Mobil oil			
a) Light oil	b) Middle oil	c) Heavy oil	d) Mobil oil			
253. In the following reaction	211.					

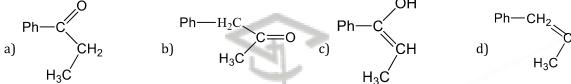
$$H_3C$$
 — CH = CH_2 $\xrightarrow{H_2O/H}$ A + B Major product Minor product CH_2

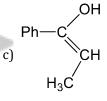
The major product is:

a)
$$H_3C - C - CH = CH_3$$

a)
$$^{\text{CH}_3}$$
 $^{\text{CH}_3}$ $^{\text{CH}_2}$ $^{\text{CH}_3}$ $^{\text{CH}_2}$ $^{\text{CH}_3}$ $^{\text{CH}_3}$ $^{\text{CH}_2}$ $^{\text{CH}_3}$ $^{\text{CH}_3}$


- 254. The treatment of ethane with cold alkaline potassium permanganate produces
 - a) Ethylene glycol


b) Formaldehyde


c) Formic acid

- d) Carbon dioxide and water
- 255. As compared to melting points of even carbon chain isomers, the melting points of odd carbon chain alkanes are:
 - a) Lower
 - b) Higher
 - c) Same
 - d) Not depend upon branching

256. Ph
$$-C \equiv C - CH_3 \xrightarrow{Hg^{2+}/H^+} A$$
,

257. In the reactions,

$$B \xleftarrow{\text{Lindlar catalyst/H}_2} RC \equiv CR \xrightarrow{\text{Na/NH}_3} A$$

A and B are geometrical isomers. Then,

a) A is cis and B is trans

b) A is trans and B is cis

c) A and B are cis

d) A and B are trans

258. Identify 'A' in the reaction:

$$\begin{array}{c} \operatorname{CH_2Br} \\ | \\ \operatorname{Br} - \operatorname{CH_2} - \operatorname{C} - \operatorname{CH_2Br} \xrightarrow{Zn/\Delta}_{\mathcal{A}} \\ | \\ \operatorname{CH_2Br} \end{array}$$

a)
$$CH_3-C=CH_2$$
 $CH=CH_2$

d)
$$CH_3C \equiv CH = CH_2$$

- 259. Choose the correct statement
 - a) Acetylene is more reactive than ethylene to an electrophilic attack
 - b) Acetylene and ethylene show similar reactivities towards an electrophilic attack with different rates
 - c) The reactivities of acetylene and ethylene towards an electrophilic attack depend on the electrophilic
 - d) Acetylene is less reactive than ethylene to an electrophilic attack

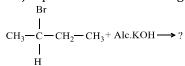
260.
$$C_6H_5CH_3 \xrightarrow{CrO_2Cl_2} Z$$

In the given sequence, Z is

- a) Benzaldehyde
- b) Toluic acid
- c) Phenyl acetic acid
- d) Benzoic acid

261 2 harrier and ha accounted to turn 2 harrier harth.	andian af	•
261. 2-hexyne can be converted to <i>trans</i> -2-hexene by the		d) NaDu
a) $H_2 - Pd/BaSO_4$ b) Li/Liq. NH_3	c) $H_2 - Pt O_2$	d) NaBH ₄
262. In the following reaction,		
$RCH_2CH = CH_2 + ICI \rightarrow [A]$		
Markownikoff's product [A] is		
$RCH_2CH - CH_2I$	$RCH_2CH - CH_2CI$	
a)	b)	
Cl	I	
$RCH_2 - C = CH_2$		
c)	d) $RCH = CH - CH_2I$	
I		
263. Which of the following will not produce ethane?		
a) Reduction of CH ₃ COOH with HI and red P		
b) Reduction of CH ₃ COCH ₃ with HI and red P		
c) Sodalime decarboxylation of sodium probionate		
d) Hydrogenation of ethane in presence of Raney-Ni		
264. Which will not react with acetylene?		
a) NaOH b) Na	c) HCl	d) Amm. AgNO ₃
265. Ozonolysis of an organic compounds gives form	aldehyde as one of the pr	oducts. This confirms
the presence of		
a) Two ethylenic double bonds	b) A vinyl group	
c) An <i>iso</i> -propyl group	d) An acetylenic triple b	ond
266. Among the paraffins it is generally found that with a	n increase in the molecular	weight:
a) The freezing point decreases		
b) The boiling point decreases		
c) The boiling point increases		
d) The vapour density decreases	CATION	
267. Which of the following reactions can be used to prep	oare methane?	
a) Clemmensen reduction		
b) Wurtz reaction		
c) Reduction of $CH_2 = CH_2$ by $LiAlH_4$		
d) Reduction of methyl iodine by using a zinc-coppe	_	
268. Ethylene reacts with dil. H ₂ SO ₄ in presence of HgSO ₄		
a) Ethanal b) Ethanol	c) Ethane	d) Ethene
269. Household gas or liquefied petroleum gas (L.P.G.) m	ainly contains:	
a) Methane and ethane		
b) Liquefied butane and isobutene		
c) Ethylene and CO		
d) C_2H_2 and H_2		_
270. Which one of the following gives, on ozonolysis,		ones?
a) $Me_2C = CHMe$	b) $Me_2C = CMe_2$	
c) $MeCH_2 - C(Me) = CMe_2$	d) $MeCH(Me) - CH = C$	НМе
271. Which among the following give alkanes on reduction	n?	
a) Aldehydes b) Ketones	c) Carboxylic acids	d) All are correct
272. Lewisite (a war gas) is ancompound.		
a) Organosulphur b) Organoarsenic	c) Organoantimony	d) Organophosphorus
273. In the following reaction,		
$C_2H_2 \xrightarrow{H_2O} X \rightleftharpoons CH_3CHO$. What is X?		

- a) CH₃CH₂OH
- b) $CH_3 O CH_3$
- c) CH₃CH₂CHO
- d) $CH_2 = CHOH$
- 274. Compound (A) on oxidation with OsO₄/NaIO₄ gives Hexanedinal. Structure of compound. (A) will be



275. Major product of the following reaction is:

- a) Butene-1
- b) Butene-2
- c) Butane
- d) Butyne-1
- 276. The compound formed as a result of oxidation of ethyl benzene by KMnO₄ is
 - a) Benzophenone
- b) Acetophenone
- c) Benzoic acid
- d) Benzyl alcohol

- 277. Methane reacts with conc. HNO₃ at high temperature to yield:
 - a) CO₂ and H₂O
- b) HCHO
- c) HCOOH
- d) CH₃NO₂

- 278. Butyne-1 and butyne-2 can be distinguished by:
 - a) Br₂, CCl₄
 - b) H₂, Lindler catalyst
 - c) Dilute H₂SO₄, HgSO₄
 - d) Ammoniacal cuprous chloride
- 279. An isolated alkadiene is:
 - a) Penta-1,4-diene
- b) Penta-1,3-diene
- c) Penta-1,2-diene
- d) None of these

- 280. $CH_3 C \equiv C CH_3 \xrightarrow{\text{Lindlar's catalyst}} A$, the compound A is
 - a) cis-2-butene
- b) *trans*-2-butene
- c) iso-butene
- d) 1-butene
- 281. If a halogen compound contains OH group, will it be possible to carry out the Wurtz reaction?
 - a) Ye:

- b) No
- FDIICO-TIA
- d) -
- 282. Reduction of 2-butyne with Na in liquid NH₃ gives predominantly:
 - a) *n*-butane
- b) Trans-2-butene
- c) No reaction
- d) Cis-2-butene
- 283. Phenyl magnesium bromide reacts with methanol to give
 - a) A mixture of anisol and Mg(OH)Br
- b) A mixture of benzene and Mg(OMe)Br
- c) A mixture of toluene and Mg(OH)Br
- d) A mixture of phenol and Mg(Me)Br

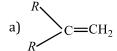
- 284. Iso-octane is added to petrol:
 - a) To precipitate inorganic material
 - b) To prevent freezing of petrol
 - c) To increase the boiling point of petrol
 - d) To increase octane number
- 285. When cyclohexane is poured on water, it floats, because:
 - a) Cyclohexane is in 'boat' form
 - b) Cyclohexane is in 'chair' form
 - c) Cyclohexane is in 'crown' form
 - d) Cyclohexane is less dense than water
- 286. Ethylene reacts with 1% cold alkaline KMnO₄ (Baeyer's reagent) to form:
 - a) Oxalic acid
- b) Acetic acid
- c) Glycerol
- d) Glycol

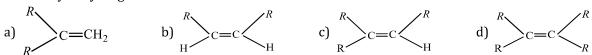
287. The reagent that would effect the following transformation is:

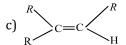
$$C_6H_5 - CH = CH - NO_2 \rightarrow C_6H_5CH_2 - CH_2 - NO_2$$
:

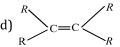
- a) NaBH₄in alcohol
- b) $[(C_6H_5)_3P]_3RhCl/H_2$
- c) LiAlH
- d) All of these

288. How many primary and tertiary carbon atoms are present in


- a) 3p, 1t
- b) 2p, 2t
- c) 1p, 3t
- d) None of these


289. Which of these will not react with acetylene?


- a) NaOH
- b) Amm. AgNO₃
- c) Na


d) HCl

290. The catalytic hydrogenation is more easier in case of which alkene?

291. Addition of hydrogen on C=C is called hydrogenation. Addition of halogen on C=C is called:

- a) Halogenation
- b) Dehalogenation
- c) Elimination of halogen
- d) None of these

292. The synthetic gas is:

a) CH₄

b) C_2H_2

- c) $CO + 3H_2$
- d) NH₃

293. Toluene on treatment with CrO₃ and (CH₃CO)₂O followed by hydrolysis with dil. HCl gives

- a) Benzaldehyde
- b) Benzoic acid
- c) Phenol
- d) Phenylacetaldehyde

294. Identify the product (*P*) in the reaction:

$$R_3$$
C—H $\xrightarrow{\text{Alk.KMnO}_4}$ P

- a) No reaction
- b) R_3C CR_3
- c) R_3 C—OH
- d) $R_3C O CR_3$

295. Gem dihalides on treatment with alcoholic KOH give

- a) Alkyne
- b) Alkene
- c) Alkane
- d) All of these

296. The presence of Ag⁺ ion increases the solubility of alkenes due to the formation of

- a) $d\pi d\sigma$ bonding
- b) $p\sigma p\pi$ bonding
- c) $p\pi d\pi$ bonding
- d) $p\pi d\sigma$ bonding

297. Acetylene and HCHO react in presence of copper acetylide catalyst to form

- a) 1-butyne-1,4-diol b) 2-butyne-1,2-diol
- c) 2-butyne-1,4-diol
- d) None of these

298. Decarboxylation of isobutyric acid leads to:

- a) Isobutene
- b) Propane
- c) Butane
- d) None of these

299. In the addition of HBr to propene in the absence of peroxides the first step involves the addition of:

a) H⁺

b) Br⁻

c) H°

d) Br

300. The IUPAC name of— $C \equiv C - CH_3$ group is:

- a) Prop-2-ynyl
- b) Prop-2-envl
- c) Prop-1-vnyl
- d) None of these

301. Pure methane can be produced by

a) Wurtz reaction

b) Kolbe's electrolytic method

c) Soda lime decarboxylation

d) reduction with H₂

302. What are *X* and *Y* respectively, in the following reaction?

$$Z - \text{product} \xleftarrow{Y} 2 - \text{butyne} \xrightarrow{X} E - \text{product}$$

- a) $Na/NH_3(liq.)$ and $Pd/BaSO_4 + H_2$
- b) Ni/140°C and Pd/BaSO₄ + H_2

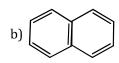
c) Ni/140°C and Na/NH₃(liq.)

d) $Pd/BaSO_4 + H_2$ and $Na/NH_3(liq.)$

303. When a mixture of methane and oxygen is passed through heated molybdenum oxide, the main product formed is

- a) Methanoic acid
- b) Ethanal
- c) Methanol
- d) Methanal

304. Propyne and propene can be distinguished by


- a) conc. H₂SO₄
- b) Br₂ in CCl₄
- c) alk. KMnO₄
- d) AgNO₃ in NH₃

305. Conformation in molecules is due to:

a) Rotation about a single bond

- b) Change in direction of light
- c) Structural changes
- d) Restricted rotation about a double bond
- 306. The non-aromatic compound among the following is

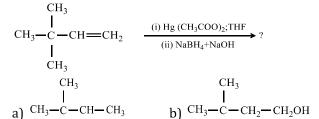
- 307. Kerosene is a mixture of:
 - a) Alkenes
- b) Alkanes
- c) Alkynes
- d) Arenes

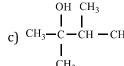
- 308. Which of the following alkenes is most stable?
 - a) $R_2C = CR_2$
- b) R— CH = CH— R
- c) $RCH = CH_2$
- d) $CH_2 = CH_2$
- 309. What is obtained when chlorine is passed in boiling toluene and product is hydrolysed?
 - a) o-cresol

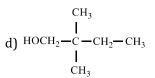
b) p-cresol

c) 2,4-dihydroxytoluene

- d) Benzyl alcohol
- 310. It is necessary to use....in the iodination of alkane.
 - a) Alcohol
- b) Oxidant
- c) Benzene
- d) Reductant


- 311. Ozonolysis of propyne gives:
 - a) CH₃CHO
- b) CH₃COCHO
- c) HCHO
- d) CHOCHO-


- 312. Reactivity of alkenes towards H*X* decreases in the order:
 - a) Butene>propene>ethene
 - b) Butene>ethene>propene
 - c) Ethene>propene>butene
 - d) None of the above
- 313. Propyne on oxidation with SeO₂ gives:
 - a) CHOCHO
- b) CH₃CH₂CHO
- c) CH₃COCHO
- d) CHOCH2CHO
- 314. 2-methylbutane on reacting with bromine in the presence of sunlight gives mainly
 - a) 1-bromo 3-methylbutane


b) 2-bromo 3-methylbutane

c) 2-bromo 2-methylbutane

- d) 1-bromo 2-methylbutane
- 315. The product of following reaction is,

- CH₃ OH 316. Which statement is correct?
 - a) Alkanes are called paraffins because of their little chemical affinity
 - b) Alkanes have only sigma bonds
 - c) Most abundant alkane is CH₄
 - d) All are correct
- 317. An activating group
 - a) actinates only *ortho* and *para* positions
- b) Deactivates meta position
- c) activates *ortho* and *para* more than *meta*
- d) Deactivates meta more than ortho and para
- 318. An alkyl bromide, RBrof molecular weight 151 is the exclusive product of bromination of which hydrocarbon?
 - a) Dodecane

b) 2, 2-dimethylpropane

c) 2, 2-dimethylhexane		d) 2, 2, 3-trimethylheptar	Opius Luucu ti.		
319. The conversion of liquid	l hydrocarbon into a mivture				
a) Hydrolysis	b) Reduction	c) Oxidation	d) Cracking		
320. Ethyl benzene cannot	•	c) Oxidation	u) Cracking		
<u>-</u>	be prepared by	b) Mt. Fitti	_		
a) Wurtz reaction		b) Wurtz-Fittig reaction			
c) Friedel-Craft's reac		d) Clemmensen reducti	on		
321. Silver acetylide when he	-				
a) C_2H_2	b) H ₂	c) C_2H_4	d) C_6H_6		
322. The addition of HCl to 3					
a) Cl ₃ CCH ₂ CH ₂ Cl	b) Cl ₃ CCH ₂ CHCl ₂	c) Cl ₂ CHCH ₂ CHCl ₂	d) Cl ₂ CHCH(Cl)CH ₂ Cl		
323. Sodium ethoxide is spec	rific reagent for:				
a) Dehydration					
b) Dehydrohalogenatioi	1				
c) Dehydrogenation					
d) Dehalogenation					
324. A fuel contains $25\% n$ -h	eptane and 75% iso-octane.	Its octane number is:			
a) 50	b) 75	c) 100	d) 25		
325. The greatest strain is in	volved in cycloalkane, when	the bond angle is:			
a) 60°	b) 90°	c) 120°	d) 108°		
326. Which of the following v	will be obtained by the brom	ination of ethylbenzene in	the presence of light?		
CH ₂ CH ₃	CH ₂ CH ₃	ÇH−CH ₃	CH ₂ CH ₂ Br		
$a)$ \bigcirc	b) p. (O)	$_{\rm c)}$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	d) \bigcirc		
Br	Br V	3, 3	")		
227 On massing electric disc	aanga thuangh guanhita in nu	occurs of II the commount	d formed in		
327. On passing electric disc					
a) CH ₄	b) C ₂ H ₆	c) C_2H_2	d) All of these		
328. Propene reacts with Cl ₂ at 400-600°C to give:					
a) 1,2-dichloropropane		c) No reaction	d) Polyvinyl chloride		
329. Methane reacts with oxy		•			
a) Acetaldehyde	b) Methyl alcohol	c) Acetic acid	d) Ethyl alcohol		
330. Ethylene is used in mak	=				
a) Anti-freeze	b) Solvent	c) Fumigant	d) All of these		
331. The main constituent of	· ·				
a) Benzene	b) Toluene	c) Phenol	d) Naphthalene		
332. The major product in th					
a) 4-pentene	b) 3-pentene	c) 2-pentene	d) 1 - pentene		
333. Which gas is commonly	_				
a) C_2H_4	b) C ₂ H ₂	c) CH ₄	d) C_2H_6		
334. The synthesis of 3-oct	yne is achieved by adding	a bromoalkane into a mi	xture of sodium amide		
and an alkyne. The br	omoalkane and alkyne res	pectively are			
a) BrCH ₂ CH ₂ CH ₂ CH ₂ C	CH_3 and $CH_3CH_2C \equiv CH$	b) BrCH ₂ CH ₂ CH ₃ and C	$H_3CH_2CH_2C \equiv CH$		
c) BrCH ₂ CH ₂ CH ₂ CH ₂ C		d) BrCH ₂ CH ₂ CH ₂ CH ₃ ar			
335. Which is most acidic of	-	, , , , , , , , , , , , , , , , , , , ,	5 Z		
a) Methane	b) Acetylene	c) 1-butene	d) <i>Neo-</i> pentane		
336. Addition of HI on double	•		•		
product, because addition		propyriodide and not <i>n</i> -pro	opyr iouiue as the major		
a) A more stable carbon					
b) A more stable carban					
c) A more stable free ra	uicai				

d) None of the above

337. Correct statement about 1,3-dibutene

- a) Conjugated double bonds are present
- c) Forms polymer

- b) Reacts with HBr
- d) All of the above

338. Preparation of ethane by electrolysis of aqueous solution of potassium acetate is called

a) Wurtz reaction

b) Kolbe's synthesis

c) Grignard reaction

d) Sabatier-Sendersen's reaction

339.
$$A(C_4H_6) \xrightarrow{H_2,Ni} B(C_4H_8) \xrightarrow{O_3/H_2O/Zn} CH_3CHO$$

Thus, A and B are

c)
$$CH_3CH_2C \equiv CH, CH_3CH = CHCH_3$$

d)
$$CH_2 = CH - CH = CH_2$$
, $CH_3CH = CH - CH_3$

340. The major product P in the following reaction is

$$CH_3 - CH = CH_2 \xrightarrow{\text{HI}} P$$

$$CH_3 - CH - CH_3$$
b)
$$I$$

$$CH_2 - CH_2$$

$$CH_2 - CH = CH_2$$

341. $CH_3CH = CHCHO$ is oxidized to $CH_3CH = CHCOOH$ using:

- a) Alkaline permanganate
- b) Ammoniacal silver nitrate
- c) Selenium dioxide
- d) Osmium tetraoxide

342. $CaC_2 + H_2O \rightarrow X \xrightarrow{O_3/\frac{H_2O}{OH^+}} HCOOH$

+HCOOH, X is

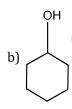
- a) C_2H_4
- b) C₂H₂
- c) C_2H_6
- d) $Ca(OH)_2$

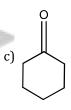
- 343. Acetylene reacts with hypochlorous acid to form
 - a) Cl₂CH, CHO
- b) ClCH₂COOH
- c) CH₃COCl
- d) ClCH₂CHO
- 344. Dehydrohalogenation of 1,2-dibromobutane with alc. KOH gives:
 - a) 1-butyne
- b) 2-butene
- c) 1-butene
- d) 1-bromo-1-butene

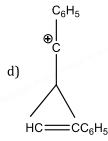
- 345. Water can be added across a triple bond in the presence of
 - a) Acidic medium
- b) Alkaline medium
- c) Neutral medium
- d) Acid and HgSO₄
- 346. Both methane and ethane may be obtained in one step reaction from:
- a) CH₃COONa
- b) CH₃I

- c) Both (a) and (b)
- d) None of these

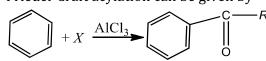
347.


The reaction of


with HBr gives predominantly


a)
$$H_3C$$
 C C C C C C C

- 348. The product formed when acetylene is passed through red hot tube is:
 - a) Benzene
- b) Cyclohexane
- c) Neoprene
- d) Ethane
- 349. The product formed when toluene is heated in light with Cl_2 and in absence of halogen carrier is
 - a) Chlorobenzene
- b) Gammexane
- c) Benzotrichloride
- d) DDT
- 350. Among the following statement on the nitration of aromatic compounds, the false one is
 - a) The rate of nitration of benzene is almost the same as that of hexadeuterobenzene
 - b) The rate of nitration of toluene is greater than that of benzene
 - c) The rate of nitration of benzene is greater than that of hexadeuterbenzene
 - d) Nitration is an electrophilic substitution reaction
- 351. Reaction of one molecule of HBr with one molecule of 1, 3-butadiene at 40°C gives predominantly
 - a) 1-bromo-2-butene under kinetically controlled conditions
 - b) 3-bromobutene under thermodynamically controlled conditions
 - c) 1-bromo-2-butene under thermodynamically controlled conditions
 - d) 3-bromobutene under kinetically controlled conditions
- 352. Which of the following compound is aromatic?



- 353. Ethylene reacts with 1% alkaline KMnO₄ to form
 - a) Oxalic acid
- b) Ethylene glycol
- c) Ethyl alcohol
- d) HCHO
- 354. To prepare a pure sample of n-hexane using sodium metal as one reactant, the other reactant or reactants will be:
 - a) Ethyl chloride and *n*-butyl chloride
 - b) Methyl bromide and *n*-pentyl bromide
 - c) n-propyl bromide
 - d) Ethyl bromide and *n*-butyl bromide
- 355. Friedel-Craft acylation can be given by

X is

a)

$$R - C - Cl$$

0

К – С – *I* ы П

$$R - C - H$$
 c)

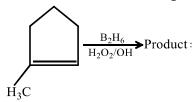
d)
$$R - O - R$$

- 356. A mixture of CS₂ and H₂S on passing over heated Cu gives:
 - a) C_aH_c

b) CH₄

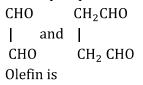
c) C₂H₄

- d) None of these
- 357. Photochemical chlorination of alkane is initiated by a process of:
 - a) Pyrolysis
- b) Substitution
- c) Homolysis
- d) Peroxidation
- 358. Under which one of the following conditions, does the reaction,


 $CH \equiv CH + CH_3OH \xrightarrow{?} CH_3O - CH = CH_2$ take place?

a) NH₄OH/80°C

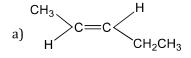
b) Conc. H₂SO₄/160°C

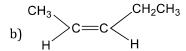

c) Anhydrous ZnCl₂/150°C

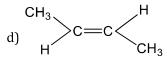
- d) $CH_3OK/160 200^{\circ}C$
- 359. Which one is correct for the given change?

- a) The product formed is *trans*-2-methyl-1-cyclopentanol
- b) The product formed is CH₃ H
- c) The addition is syn addition
- d) All of the above
- 360. The electrolysis of aqueous solution of potassium succinate produces
 - a) Methyl alcohol
- b) ethyl alcohol
- c) ethene
- d) ethane

361. Ozonolysis products of an olefin are







362.
$$CH_3C \equiv CH \xrightarrow{(1)NaNH_2} A \xrightarrow{H_2} A \xrightarrow{H_2} B$$
Lindlar's catalyst

What is *B* in the above reaction?

- 363. The gas believed to be the cause of explosion in coal-mines or fire damp is:
 - a) Methane
- b) Ethane
- c) C_3H_8

- d) CO
- 364. Addition of HBr to propylene in presence of benzoyl peroxide, follows

a) Markownioff's rule

b) Baeyer's rule

c) Carbanion mechanism

- d) anti-Markownioff's rule
- 365. 2-phenyl propene on acidic hydration gives,
 - a) 2-phenyl-2-propanol

b) 2-phenyl-1-propanol

c) 3-phenyl-1-propanol

d) 1-phenyl-2-propanol

- 366. $CH_2 = CH_2$ is also called a:
 - a) Monomer
- b) Polymer
- c) Isomer
- d) Equimer

- 367. Halogenation of alkanes is an example of:
 - a) Electrophilic substitution
 - b) Nucleophilic substitution
 - c) Free radical substitution
 - d) Oxidation
- 368. The most stable isomer of 1,2-dichloroethane is:
 - a) Staggered
- b) Gauche
- c) Eclipsed
- d) Partially eclipsed

369. Which does not decolourize Br₂water?

a)
$$CH_2 = CH_2$$

b)
$$CH_3$$
 $C=C$ CH_3 CH_3

- c) $CH_3C \equiv CH$
- d) $CH_2 = CHCH_3$

- 370. Grignard's reagent gives alkane with:
 - a) H_2O

- b) C₂H₅OH
- c) $C_2H_5NH_2$
- d) All of these

- 371. The carbon-carbon bond length in benzene is
 - a) In between C₂H₆ and C₂H₄

b) Same as in C₂H₄

c) In between C₂H₆ and C₂H₂

- d) In between C₂H₄ and C₂H₂
- 372. Electrolysis of a concentrated solution of sodium fumarate gives:
 - a) Fumaric acid
- b) Ethylene
- c) Ethane
- d) Acetylene

- 373. In order to overcome angle strain, cyclohexane acquires:
 - a) Square planar structure
 - b) Planar structure
 - c) Puckered ring structure
 - d) Pyramidal structure
- 374. o-toluic acid on reaction with Br_2 + Fe gives

$$CH_3$$
 CO_2H Br

375. The reaction, $CH_2 = CH_2 + H_2 \frac{Ni}{250.300^{\circ}C} CH_3 - CH_3$

is called:

- a) Wurtz's reaction
- b) Kolbe's reaction
- c) Sabatier and Senderens d) Carbylamines reaction reaction

376.
$$CH_3$$
 $CH-CH_2-CI \xrightarrow{AlCl_3} X$

Identify the *X* in the above reaction

$$CH < CH_3$$

$$C_2H$$

$$CH_3 > C - CH_3$$

377.
$$CH_3 - CH = CH_2 + NOCl \rightarrow P$$

Identify the adduct

$$\begin{array}{c|cc} \operatorname{CH}_3 - \operatorname{CH} - \operatorname{CH}_2 \\ \text{a)} & | & | \\ & \operatorname{Cl} & \operatorname{NO} \\ \operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{CH} \\ \text{c)} & | & | \\ & \operatorname{Cl} \end{array}$$

$$CH_3 - CH - CH_2$$

b) | | NO Cl
 $CH_2 - CH_2 - CH_2$
d) | |

- 378. Ethane can be freed(isolated) from the impurity of ethylene by washing with:
 - a) HCl

- b) HNO₃
- c) H_2SO_4

NO

d) water

- 379. Poisonous gases are:
 - a) Phosgene
- b) Lewisite
- c) Mustard gas
- d) All of these
- 380. A chlorohydrocarbon, named chlorodane is used especially as:
 - a) Insecticide
- b) Anti-worm
- c) Fungicide
- d) Anti-termite

- 381. The highest boiling point is expected for
 - a) iso-octane

b) n-octane

c) 2, 2, 3, 3-tetramethyl butane

- d) *n*-butane
- 382. The addition of tetraethyl lead of petrol:
 - a) Lowers its octane number
 - b) Raises its octane number
 - c) May raise or lower the octane number
 - d) Has no effect on octane number
- 383. Which of the following reactions will give an alkyne?

a)
$$CH_3CBr_2CHBr_2 \xrightarrow{Zn/alc.}$$

b)
$$CH_3CH_2CHBr_2 \xrightarrow{alc.KOH}$$

c) $CH_3CHBrCH_2Br \xrightarrow{NaNH_2}$

- d) All of the above
- 384. Which one among the following is assigned an octane number of zero?
 - a) Iso-octane
- b) *n*-heptane
- c) Isoheptane
- d) 2-methyloctane
- 385. The process where straight run gasoline is cracked in order to increase octane number is called:
 - a) Aromatization
- b) Rearrangement
- c) Substitution
- d) Reforming
- 386. The treatment of aluminum carbide with water or dilute acid produces
 - a) acetylene
- b) ethene
- c) methane
- d) ethane
- 387. When acetylene is passed through red hot iron tube, compound *X* is formed. Which one of the following reactions will yield *X* as the major product?
 - a) $C_6H_5OH + Zn \frac{DI}{}$

b) $C_6H_5SO_3H + NaHCO_3 \rightarrow$

c) $C_6H_{12} + 3H_2 \xrightarrow{Ni}$

d) $C_6H_5Cl + H_2O \xrightarrow{\Delta}$

388. In the reaction

$${\rm C_6H_5CH_3} \xrightarrow{{\rm Oxidation}} A \xrightarrow{{\rm NaOH}} B \xrightarrow{{\rm Sodalime}} C$$
 Identify C is

a) C ₆ H	-	b) C ₆ H ₆	c) C ₆ H ₅ COONa	d) C ₆ H ₅ ONa
	· -	med when a 3, 3-dimethy	l butan-2-ol is heated wi	th concentrated sulphuric
acid, is	3			
a) 2,3 -	dimethyl-2-but	ene		
b) 2,3-	dimethyl-1-but	ene		
c) 3,3 -	dimethyl-1-but	ene		
d) <i>cis</i> :	and <i>trans</i> isome	ers of 2,3-dimethyl-1-bute	ene	
390. Most o	f the hydrocarbo	ns from petroleum are obtai	ned by:	
a) Frac	tional distillation	1		
b) Frac	tional crystalliza	tion		
	orisation			
	merization			
391. Cyclop	entadienyl anio	on is		
a) Aro	matic	b) Non-aromatic	c) Non-planar	d) Aliphatic
	ysis of buta-1,3-c	liene gives:		
	O and glyoxal			
	CHO and glyoxal			
	and glyoxal			
-	O+glyoxal+CH ₃			
		case of natural gas?		
a) It is		of aturn of foutilizar		
=	used in the mant a mixture of CO ₂	afacture of fertilizer	>	
-		eous hydrocarbons		
-	_	omoethane yields:		
	omobutane	b) <i>n</i> -butane	c) Isobutene	d) Ethane
=		g compounds is not aroma		a) Bonano
(⊕ ^		⊕	
a) /		b) [c) [d) [
		`		['] N N N N N N N N N N N N N N N N N N N
206 Which	— products are for	انستا ned during the addition of B	r on otherland in processes	of aguacia NaNO galution?
	Br. CH ₂ ONO ₂	ned during the addition of b	or 2011 ethylene in presence	or aqueous Naivo3sorution:
, -	Br. CH ₂ Br			
	(ONO ₂). CH ₂ ONO	2		
	(a) and (b)	2		
-	, , , , ,	rbon atoms are converted in	nto an aromatic hydrocarbo	on, when heated in presence
	on Al ₂ O ₃		•	•
a) 6 to	10	b) 4 to 8	c) 3 to 6	d) 5 to 6
398. Chlori	nation of toluen	e in the presence of light	and heat followed by trea	ntment with aqueous
NaOH	solution gives			
a) <i>o-</i> cr	esol		b) <i>p</i> -cresol	
-	zoic acid		d) 2,4-dihydroxytoluen	e
-		ed into benzaldehyde by oxi		
	10 ₄ /alkali	b) CrO ₂ Cl ₂		d) O_2/V_2O_5
	$CH_2 - C \equiv CH$		_ .	
	mpound A is	2 4		

0

a)

b) $\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CHO}$

 $CH_3 - CH_2 - C - CH_3$ c) $CH_3 - CH_2 - CH_2 - COOH$ d) None of the above 401. When acetylene is passed through dil. H₂SO₄ in presence of HgSO₄, the compound formed is a) Ether b) Acetaldehyde c) Acetic acid d) Ketone 402. The reagent used for dehydration is: a) Conc. H₂SO₄ b) P_2O_5 c) Al_2O_3 d) All of these 403. A hydrocarbon has the formula C₃H₄. To find out whether it contains two double bonds or triple bonds, the following test is performed: a) Passed through ammoniacal AgNO3 b) Treated with Baeyer's reagent c) Treated with Fehling's solution d) Treated with Br2 water 404. The chemicals and the reaction conditions required for the preparation of ethane are a) C_2H_5I , Zn - Cu, C_2H_5OH b) CH₃Cl, Na, H₂O c) KOOC - CH = CH - COOK, electrolysis d) CH_3CO_2Na , NaOH, CaO, Δ 405. Formation of alkane by the action of zinc on alkyl halide is called a) Wurtz reaction b) Kolbe's reaction c) Ulmann's reaction d) Frankland reaction 406. The two carbon atoms marked by asterisk in H_3C — $\stackrel{*}{C} \equiv \stackrel{*}{C}$ — CH_3 possess the following type of hybridisation: d) s 407. $CH_3 - C \equiv C - CH_3 \frac{COR}{(ii)Zn/H_2O}$ a) HNO₃ b) 0_2 c) 0_3 d) KMnO₄ 408. Temperature of oxyacetylene flame is: a) 2549°C b) 2400°C c) 2700°C d) 3000 to 3500°C 409. Benzene can be obtained by heating either benzoic acid with X or phenol with Y. X and Y are respectively a) Zinc dust and soda lime b) Soda lime and zinc dust c) Zinc dust and sodium hydroxide d) Soda lime and copper 410. Hydrocarbon reacts with metal by displacing the H-atom is: b) C_2H_6 c) C_2H_4 d) C_2H_2 411. Petroleum is a mixture of: a) Aromatic hydrocarbons with small amounts of aliphatic compounds

- - b) Aliphatic hydrocarbons with small amounts of aromatic compounds
 - c) Mixture of equal amount of aliphatic and aromatic hydrocarbons
 - d) Alcohols and fatty acids
- 412. The reduction of an alkyne to alkene using Lindlar catalyst result into
 - a) cis addition of hydrogen atoms
 - b) trans addition of hydrogen atoms
 - A mixture obtained by *cis* and *trans* additions of hydrogen atoms which are in equilibrium with each c) other
 - A mixture obtained by cis and trans additions of hydrogen atoms which are not in equilibrium with each other

- 413. Which molecule will undergo radical formation oxidation reaction most readily?
 - a) CH₃CH₂CH₃
- b) CH₃CH₂CH₂CH₃
- c) $(CH_3)_3CH$
- d)

414. Which of the following is expected to be aromatic?

- 415. Aniline is treated with a mixture of sodium nitrite and hypophosphorus acid, the product formed
 - a) Aniline diazonium hypophosphate
- b) Benzene

c) Anilinium hypophosphite

d) Aniline diazonium hypophosphite

- 416. Hexachloroethane is also called
 - a) DDT

b) TNT

- c) Artificial camphor
- d) BHC

- 417. In presence of nickel cyanide, acetylene gives
 - a) Benzene
- b) Cyclooctatetraene
- c) Cyclohexatriene
- d) Cyclobutadiene

- 418. Conjugated double bonds are present in:
 - a) Propylene
- b) Isobutylene
- c) Butylene
- d) 1,3-butadiene

- 419. Normal alkanes can undergo sulphonation if they contain:
 - a) 4 carbon atoms
 - b) 5 carbon atoms
 - c) At least 6 carbon atoms
 - d) 3 carbon atoms

In the above reaction, *X* is

- a) HNO_3

- d) KMnO₄
- 421. The dehydrohalogenation of neopentyl bromide with alcoholic KOH gives mostly:
 - a) 2-methyl-1-butene
- b) 2,2-dimethyl-1-butene c) 2-methyl-2-butene
- d) 2-butene
- 422. What is obtained, when ammoniacal AgNO₃ reacts with acetylene?
 - a) Propanone
- b) Silver acetylide
- c) Ethylene
- d) None of these
- 423. Which of the following liberates methane on treatment with water?
 - a) Silicon carbide
- b) Calcium carbide
- c) Beryllium carbide
- d) Magnesium carbide

- 424. Which statement is correct?
 - a) Chloroacetic acid is less acidic than acetic acid because chlorine atom has-I effect
 - b) The greater the branching in a paraffin the lower is its b.p.
 - c) Kjeldahl's method is used for the estimation of chlorine
 - d) All of the above
- 425. The most stable conformational isomer of cyclohexane is:
 - a) Chair form
- b) Boat form
- c) Half chair form
- d) Twisted form

426. In the following reaction sequences,

$$Cl-Cl \rightarrow \dot{C}l+\dot{C}l$$
 (1)

$$\dot{C}l - CH_4 \longrightarrow \dot{C}H_3 + HCl$$

$$\dot{C}H_3+\dot{C}l_2$$
 \longrightarrow $\dot{C}H_3+Cl+\dot{C}l$

$$\dot{C}H_3 + \dot{C}H_3 \longrightarrow CH_3 - Cl_3$$

the termination step is:

- a) Reaction 1
- b) Reaction 2
- c) Reaction 3
- d) Reaction 4

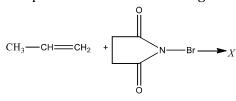
427. Which of the following is elimination reaction?

- a) $CH_3CH_2OH \rightarrow CH_2 = CH_2 + H_2O$
- b) $CH_3CH_2Br \rightarrow CH_2 = CH_2 + HBr$
- c) $Br CH_2 CH_2 Br \xrightarrow{Zn} CH_2 = CH_2 + ZnBr_2$
- d) All of the above are correct

428. CH \equiv CH $\stackrel{\text{O}_3/\text{NaOH}}{\longrightarrow}$ X $\stackrel{\text{Zn/CH}_3\text{COOH}}{\longrightarrow}$ Y. Y is:

- a) $CH_2OH CH_2OH$ b) CH_3CH_2OH
- c) CH₃COOH
- d) CH₃OH

429. Baeyer's reagent is used in the laboratory for:

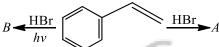

- a) Detection of double
- b) Detection of glucose
- c) Reduction
- d) Oxidation

bonds

430. Product formed on electrolysis of potassium salt of fumaric and maleic acid is

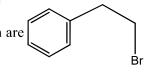
- a) Ethane
- b) Ethene
- c) Ethyne
- d) Methane

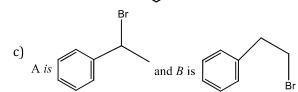
431. The product 'X' in the following reaction is


a) $CH_3Br - CH = CH_2$

A and B both are

Br
b) \mid $CH_3 - C = CH_2$


c) $CH_3CH = CHBr$


- d) None of the above
- 432. Observe the following reactions and predict the nature of *A* and *B*.

hv

b) A and B both are

d) A is Br and B is

433. HBr is added to CH_3 — $CH = CH_2$ in presence of peroxides. The resultant compound is:

- a) CH₃CHBrCH₃
- b) C₂H₅CH₂Br
- c) $CH_2 = CH_2CH_2Br$
- d) None of these

434. Amount of Br₂ required to react with 5 g pentene to form monobromo derivative is:

a) 11.11 g

a)

- b) 11.43 g
- c) 5.55 g
- d) None of these

435. The compound (i) decolourises $KMnO_4$ (ii) forms ozonide with ozone and (iii) undergoes polymerization. It will be:

- a) C_6H_6
- b) C_3H_8

c) C_2H_4

d) C_2H_6

436. The strongest *ortho/para* directing group is

- a) $-NH_2$
- b) $-CH_3$
- c) -Cl

d) $-C_2H_5$

437. Which of the following species will be aromatic?

d) None of these

- 438. When chlorine is passed through warm benzene in presence of the sunlight, the product obtained is
 - a) Benzotrichloride
- b) Chlorobenzene
- c) Gammexane
- d) DDT
- 439. The C = C bond distance in an organic compound is 1.34 Å. It can be
 - a) Butene
- b) Hexatriene
- c) Cyclohexatriene
- d) Any of these
- 440. The lowest possible alkane with ethyl group as substituents possesses mol. mass equal to:

b) 72

c) 84

d) 128

441. The reagent(s) for the following conversion,

cis/are

a) Alcoholic KOH

- b) Alcoholic KOH followed by NaNH₂
- c) Aqueous KOH followed by NaNH₂
- d) Zn/CH₃OH
- 442. Aqueous H₂SO₄ reacts with 2-methyl-1-butene to give predominantly:
 - a) Isopentyl hydrogen sulphate
 - b) 2-methyl-3-butene
 - c) 2-methyl-1-butene
 - d) Secondary butyl hydrogen sulphate
- 443. The number of conformation(s) for ethane is/are:
 - a) 1

b) 2

c) 3

- d) Infinite
- 444. The test for unsaturation is confirmed by the decolourisation of which of the following?
 - a) Iodine water
- b) CuSO₄ solution
- c) Bromine water
- d) All of these

445. Which does not react with chlorine in dark?

a) CH₄

b) C_2H_2

- c) C_2H_4
- d) CH₃CHO

- 446. The ozonolysis of isobutene gives:
 - a) CH₃CHO
- b) CH₃COCH₃ and HCHO c) CH₃CH₂OH
- d) CH₃OH

- 447. Which compound on reductive ozonolysis forms only glyoxal?
 - a) Ethyne
- b) Ethene
- c) Ethane
- d) 1,3-butadiene

448. The reaction,

$$CH_3$$
 CH_3
 CH_3

is the example of:

- a) Sulphonation
- b) Dehydration
- c) Alkylation
- d) Decomposition
- 449. The catalyst used in the manufacture of polythene by Ziegler method is:
 - a) Titanium tetrachloride and triphenyl aluminium

 - b) Titanium tetrachloride and trimethyl aluminium c) Titanium dioxide
 - d) Titanium isopropoxide
- 450.

a) 6-oxoheptanal

b) 6-oxoheptanoic acid

c) 6-hydroxyheptanal

On reductive ozonolysis yields

d) 3-hydroxypentanal

451. The treatment of CH_3MgX with $CH_3C \equiv C - H$ produces

- a) $CH_3 CH = CH_2$ b) $CH_3C \equiv C CH_3$
- Н c) d) CH₄ $CH_3 - C = C - CH_3$

452. 1,3-butadiene has:

- a) Only sp-hybridised C-atoms
- b) Only sp^2 -hybridised C-atoms
- c) sp, sp^2 and sp^3 -hybridised C-atoms
- d) Sp and sp^2 -hybridised C-atoms

453. Chloroform, on warming with Ag powder gives

- a) C_2H_6
- b) C_2H_6
- c) C_2H_4
- d) C_2H_2

454. By Wurtz reaction, a mixture of methyl iodide and ethyl iodide gives

a) Butane

b) Ethane

c) Propane

d) A mixture of the above three

455. The following reaction is an example of,

$$C_3H_8 + 2Cl_2 \xrightarrow{Light} C_3H_6Cl_2 + 2HCl$$

- a) An addition reaction
- b) A substitution reaction
- c) An elimination reaction
- d) None of the above

456. Acetylene on passing into excess of HOCI solution forms:

- a) Ethylene chlorohydrin
- b) Acetaldehyde
- c) Dichloroacetaldehyde
- d) Methyl chloride

457. Ethylene forms ethylene chlorohydrin by the action of:

- a) Dry chlorine gas
- b) Dry hydrogen chloride gas
- c) Solution of chlorine gas in water
- d) Dilute hydrochloric acid

458. Which one of the following has the smallest heat of hydrogenation per mole?

- a) 1-butene
- b) *Trans*-but-2-ene
- c) Cis-but-2-ene
- d) Buta-1, 3-diene

459. $\xrightarrow{O_SO_4} A, A \text{ is}$

- a) meso diol
- b) Racemic diol
- c) Both (a) and (b)
- d) None of these

460. Which of the following characteristic apply both to ethane and ethyne?

- a) Explode when mixed with chlorine
- b) Decolourise Baeyer's reagent giving brown precipitate
- c) Rapidly absorbed by cold conc. H₂SO₄
- d) Form white precipitate with AgNO₃ solution

461. Conjugated double bond is present in:

- a) Propylene
- b) Isobutylene
- c) 1,3-butadiene
- d) Butylene

462. The reactivities of ethane, ethylene and acetylene are of the order

a) Ethane<ethyne

b) Ethane <ethyne<ethene

c) Ethyne = ethene> ethane

d) Any of the above

463. Which is not linked with methane?

- a) Marsh gas
- b) Natural gas
- c) Producer gas
- d) Coal gas

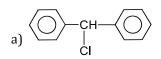
464. Acetylene can be obtained by the reaction?

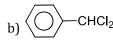
b)
$$CHI_3 + Ag \xrightarrow{\Delta}$$

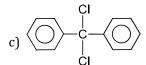
c)
$$CH_3CH_2OH \xrightarrow{Conc.H_2SO_4}$$

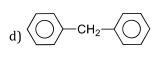
d)
$$Be_2C + H_2O \rightarrow$$

465. Wet ether is not used as a solvent in Wurtz reaction, because the water present in it

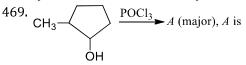

a) Hydrolyses RX to ROH


b) Reduces RX to RH


c) Destroy the Na metal


d) Reacts with R - R

466. When excess of C_6H_6 reacts with CH_2Cl_2 in presence of anhydrous $AlCl_3$, the following compound is obtained



467. The product formed during the reaction,

$$CH \equiv CH + NaOCl \xrightarrow{0^{\circ}C} is:$$

- a) 1,2-dichloroethane
- b) 1,2-dichloroethanal
- c) 1,2-dichloroethene
- d) 1,2-dichloroethyne
- 468. Out of the following fractions of petroleum the one having the lowest boiling point is:
 - a) Kerosene
- b) Diesel oil
- c) Gasoline
- d) Heavy oil

470. Acetylene on reacting with hypochlorous acid gives:

- a) CH₃COCl
- b) CICH2CHO
- c) Cl₂CH, CHO
- d) ClCH₂COOH

471. The reduction of 4-octyne with H₂ in the presence of Pd/CaCO₃ quinoline gives

a) trans-4-octene

- b) cis-4-octene
- c) A mixture of cis-and trans-4-octene
- d) A completely reduced product C₈H₁₈

472. R—CH=CH₂ $\frac{\text{Na/NH}_3(l)}{\text{C}_2\text{H}_5\text{OH}}$ RCH₂CH₃ is called:

- a) Clemmensen reduction
- b) Fisher-Spier reduction
- c) Birch reduction
- d) Arndt-Eistert reduction

473. Which one of the following compounds will react with methyl magnesium iodide?

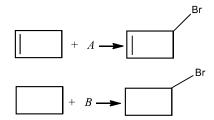
a) CH₃CH₂CH₂CH₂CH₃

b) $CH_3CH = CH - CH = CH_2$

c) $CH_3 - C \equiv C - CH_2CH_3$

d) $CH_3CH_2CH_2C \equiv CH$

474. Degree of unsaturation in the following compound is


a) 1°

b) 2°

c) 3°

d) 4°

475. Suitable reagents *A* and *B* for the following reactions are

- a) Br, Br_2
- b) Br₂, NBS
- c) NBS, NBS
- d) NBS, Br₂
- 476. During ozonolysis of CH₂ = CH₂ if reduction is carried out by LiAlH₄ the products formed are:
 - a) HCHO
- b) HCOOH
- c) CH₃OH
- d) CH2OHCH2OH

- 477. Ethyl hydrogen sulphate is obtained by reaction of H₂SO₄ on:
 - a) Ethylene
- b) Ethane
- c) Ethyl chloride
- d) Ethanal
- 478. When HCI gas is passed through propene in the presence of benzoyl peroxide, it gives:
 - a) *n*-propyl chloride
- b) 2-chloropropane
- c) Allyl chloride
- d) No reaction

- 479. Hydrocarbon which is liquid at room temperature is
 - a) Pentane
- b) Butane
- c) Propane
- d) Ethane

480. Which of the following reactions are not expected to give

$$\begin{array}{c} \mathsf{CH_3} \\ | \\ \mathsf{CH_3} - \mathsf{C} - \mathsf{CH} = \mathsf{CH_2} \\ | \\ \mathsf{CH_3} \end{array}$$

In yields of more than 50%?

a)
$$CH_3$$
 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_5 CH_5 CH_6 CH_7 CH_7

c)
$$CH_3$$
 CH_3 CH_3

- b) $CH_3 CH_3 CH_3 = CH_3 + CH_3 = CH_3 + CH_3 = CH_3$
- d) None of the above

- 481. Incorrect name of an alkyne is:
 - a) Propyne
- b) But-2-yne
- c) Pent-3-yne
- d) But-1-yne
- 482. The alkyne which gives pyruvic acid (CH₃COCOOH) on oxidation with alk. KMnO₄ is:
 - a) CH ≡ CH
- b) $CH_3C \equiv CH$
- c) $CH_3C \equiv C-CH_3$
- d) $CH_3 CH_2 C \equiv CH$
- 483. A hydrocarbon of formula C_6H_{10} absorbs only one molecule of H_2 upon catalytic hydrogenation. Upon ozonolysis the hydrocarbon yields,

The hydrocarbon is:

- a) Cyclohexane
- b) Benzene
- c) Cyclohexene
- d) Cyclobutane

- 484. Alkyl halides react with dialkyl copper reagents to give
 - a) Alkenyl halides

b) Alkanes

c) Alkyl copper halides

- d) Alkenes
- 485. $A \xrightarrow{O_3/Zn, H_2O} (CH_3)_2CO + HCHO + CHO + CHO$

Thus, A is

a) $(CH_3)_2CHCH = CHCH = CH_2$

- b) $(CH_3)_2C = CH CH = CH_2$
- c) $CH_3CH = CH CH = CH CH = CH_2$
- d) none of the above

486. In the series,

$$C_2H_5 \xrightarrow{\text{NaNH}_2} X \xrightarrow{\text{CH}_3I} Y \xrightarrow{\text{HgSo}_4} Z$$

The compound Z is

- a) $CH_3CH_2CH = CH_2$
- b) CH₃COCH₃
- c) CH₃CHO
- d) CH₃CH₂CH₂CHO

487. Paraffin dissolves in:

- a) Distilled water
- b) Benzene
- c) Methanol
- d) Salt water

488. Which cannot be prepared by Kolbe's electrolytic reaction using single salt?

a) CH₄

- b) C_2H_6
- c) C_4H_{10}
- d) H_2

489. Which will react with NaBH₄?

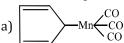
- a) Benzoic acid
- b) Benzamide
- c) Cyclohexanone
- d) Acetic acid

490. When methane is made to react with a halogen (X_2) , halides are formed, the order of reactivity is:

- a) $F_2 > Cl_2 > Br_2 > I_2$
- b) $Cl_2 > F_2 > Br_2 > I_2$
- c) $I_2 > Br_2 > Cl_2 > F_2$
- d) $Cl_2 > F_2 > I_2 > Br_2$

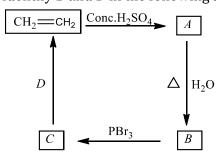
491. Which of these does not follow anti - Markownikoff's rule?

- a) 2-butene
- b) 1-butene
- c) 2-pentene
- d) 2-hexene


492. Acetylene reacts with HCN in the presence of Ba(CN)₂ to yield

- a) 1,1-dicyanoethane
- b) 1,2-dicyanoethane
- c) Vinyl cyanide
- d) None of these

493. An alkyl bromide (X) reacts with Na to form 4, 5-diethyl octane. Compound (X) is:


- a) $CH_3(CH_2)_3Br$
- b) $CH_3(CH_2)_5Br$
- c) CH₃(CH₂)₃CHBr. CH₃
- d) CH₃(CH₂)₂CHBrCH₂CH₃

494. To avoid lead pollution, a new anti-knock compound is used. It is:

- b) Cyclopentadienyl manganese carbonyl
- c) AK-33-X
- d) All of the above

495. Identify B and D in the following sequence of rea

a) Methanol and bromoethane

- b) Ethyl hydrogen sulphate and alcoholic KOH
- c) Ethyl hydrogen sulphate and aqueous KOH
- d) Ethanol and alcoholic KOH

496. Angle strain in cyclopropane is

- a) 24°44′
- b) 9°44′
- c) 44'

d) $-5^{\circ}16'$

497. When propyne react with $\rm H_2O$ in presence of dil. $\rm H_2SO_4$ and $\rm HgSO_4$ product formed is

- a) Acetone
- b) Acetaldehyde
- c) Acetic acid
- d) Ethyl alcohol

498. Which of the following compounds cannot be prepared singly by the Wurtz reaction?

a) C_2H_6

- b) $(CH_3)_2CHCH_3$
- c) CH₃CH₂CH₂CH₃
- d) All can be prepared

499. The olefin which on ozonolysis gives CH₃CH₂CHO and CH₃CHO is:

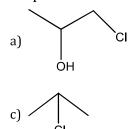
- a) 1-butene
- b) 2-butene
- c) 1-pentene
- d) 2-pentene

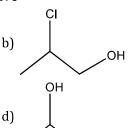
500. Which statement is false?

a) Peroxide effect is applicable only for HBr and not for the other halogen halides

PHONE NO: 8583042324 Page | 41

	c) Chlorination of methane follows an ionic mechanism				
	d) In benzene the C atoms are sp^2 -hybridized				
501.	. The presence of unsaturat	The presence of unsaturation (olefinic or acetylinic bond) in an organic compound can be tested with:			
	a) Schiff's reagent	b) Tollen's reagent	c) Fehling's solution	d) Baeyer's reagent	
502.	An alkene on reductive	ozonolysis gives 2-molec	cules of $CH_2(CHO)_2$. The	alkene is	
	a) 2,4-hexadiene		b) 1,3-cyclohexadiene		
	c) 1,4-cyclohexadiene		d) 1-methyl-1, 3-cyclope	entadiene	
503.	3. A mixture of ethyl iodide and n -propyl iodide is subjected to Wurtz reaction. The hydrocarbon that				
	be formed is:	,		•	
	a) <i>n</i> -butane	b) <i>n</i> -propane	c) <i>n</i> -pentane	d) <i>n</i> -hexane	
504.	Which of the following i	reacts with benzene in pi	resence of anhydrous alu	minium chloride and	
	forms acetophenone?	·	·		
	a) CH ₃ Cl	b) CH ₃ COOH	c) CH ₃ CHO	d) CH ₃ COCl	
505.		vith hot KMnO ₄ solution	- · · · · · · · -	, ,	
	a) CH ₃ CH ₂ COOH + HCO		b) CH ₃ CH ₂ COOH + CO ₂		
	c) $CH_3COOH + CO_2$	011	d) $(CH_3)_2C = O + CO_2$		
506	Action of Br_2 on cyclopent	ene gives:	$u_{j}\left(cn_{3}\right)_{2}c=0+co_{2}$		
500.	a) 1,2-dibromo cyclopent	_			
	b) Cyclopentyl bromide	anc			
	c) Cyclopentyl dibromide				
	d) No reaction				
507.	Which of the following s	species is aromatic?	P		
	// \	// \\	//\		
	_ // \	// \	_ // \	/	
	a) (b) //	c) (d) \/	
	ě	C. Ö. EDIIA	ATION	Θ	
508.	Propene, CH_3 — $CH = CH_2$	can be converted into 1-p	ropanol by oxidation. Whic	h set of reagents among the	
	following is ideal to effect				
	a) Alkaline KMnO ₄	b) B_2H_6 and alk H_2O_2	c) O ₃ /zinc dust	d) OsO ₄ /CHCl ₃	
509.	Compound which gives	acetone on ozonolysis			
	a) $CH_3 - CH = CH - CH$	[3	b) $(CH_3)_2C = C(CH_3)_2$		
	c) $C_6H_5CH = CH_2$		d) $CH_3CH = CH_2$		
510.	·	th Br _a /Fe gives n - bromoto	oluene as the major product	t because the - CH ₂ group	
	a) Is <i>meta</i> directing	212/10, gr. 00 p 210	b) deactivates the ring	s seemase the string group	
	c) activates the ring by hy	perconiugation	d) None of the above		
511.	. Alkynes occur in nature in	- · -	.,		
	a) Free state		c) Not in the free state	d) None of the above	
512.		•	tion about carbon-carbon b	•	
	a) Ethane	b) Ethylene	c) Acetylene	d) Hexachloroethane	
513.	Identify Z in the series,	,		,	
	HBr aq.KOI	H NaCO ₃			
	$CH_2 = CH_2 \xrightarrow{HBr} X \xrightarrow{\text{aq.KOI}}$	$\rightarrow Y \xrightarrow{I_2 \text{excess}} Z$			
	a) C ₂ H ₅ I	b) C ₂ H ₅ OH	c) CHI ₃	d) CH ₃ CHO	
514.	Action of NH_3 over C_2H_2 a	nt high temperature gives:			
	a) Amine	b) Furan	c) Thiophene	d) Pyrrole	
515.	. Wurtz reaction converts a	ılkyl halide into alkane whe	en it is made to react with		
	a) Na in alcohol	b) Na in dry ether	c) Zn in alcohol	d) Zn in dry ether	
516.	. Polyethylene is a resin ob	tained by polymerization o	f:		


WEB: WWW.GPLUSEDUCATION.ORG


b) Meta directing groups are deactivating groups

GPLUS EDUCATION

- a) Butadiene
- b) Ethylene
- c) Isoprene
- d) Styrene

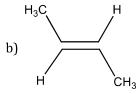
- 517. Cyclohexane (C_6H_{12}) a hydrocarbon, floats on water because:
 - a) It is immiscible with water
 - b) Its density is less than that of water
 - c) It is a non-polar substance
 - d) It is immiscible and lighter than water
- 518. Which of the following are produced from coaltar?
 - a) Synthetic dyes
- b) Drugs
- c) Perfumes
- d) All of these
- 519. The reduction of an alkyne to alkene using lithium metal in liquid ammonia as solvent results into
 - a) cis addition of hydrogen atoms
 - b) trans addition of hydrogen atoms
 - $_{\rm o}$ Both cis and trans additions of hydrogen atoms. The relative amounts of the two depends on
 - temperature
 - d) Both cis and trans additions of hydrogen atoms. The relative amounts depend on the nature of alkyne
- 520. Propene on reaction with hypochlorous acid to give

- 521. A mixture of nitrogen and acetylene, on passing electric spark through it gives:
 - a) Hydrogen and carbon b) Hydrogen cyanide
- c) Nitromethane
- d) Nitroethane

522. In the sequence of reactions,

$$C_2H_4 \xrightarrow{HBr} X \xrightarrow{AgCN} Y \xrightarrow{(H)} Z,$$

Compound Zis


a) N-methyl ethanamine

b) N-propylamine

c) N, N-dimethylamine

- d) Ethyl cyanide
- 523. Which one of these is not true for benzene?
 - a) It forms only one type of monosubstituted product.
 - b) There are three carbon-carbon single bonds and three carbon-carbon double bonds
 - c) The heat of hydrogenation of benzene is less than the theoretical value.
 - d) The bond angle between the carbon-carbon bonds is 120°.
- 524. Presence of a nitro group in a benzene ring
 - a) Activates the ring towards electrophilic substitution
 - b) Renders the ring basic
 - c) Deactivates the ring towards nucleophilic substitution
 - d) Deactivates the ring towards electrophilic substitution
- 525. The major product in the reaction of 2-butyne with Li/liq. NH₃ is

c) CH₃CH₂CH₂CH₃

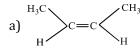
d) $H_2C = CH - CH_2 - CH_3$

526. Hydrocarbon liquid at STP is:

- a) Ethane
- b) Propane
- c) Butane
- d) Pentane
- 527. Chlorination of benzene is not possible in the following reaction
 - a) $C_6H_6 + Cl_2 \xrightarrow{FeCl_3}$
- b) $C_6H_6 + HOCl \xrightarrow{H^+}$
- c) $C_6H_6 + I Cl \xrightarrow{ZnCl_2}$
- d) $C_6H_6 + Cl_2 \xrightarrow{AlCl_3}$
- 528. In the series, ethane, ethene and ethyne, the C-H bond energy is
 - a) Same in all the three compounds
- b) Greatest in ethane

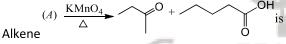
c) Greatest in ethene

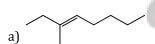
d) Greatest in ethyne

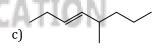

- 529. The shape of 2-butene is:
 - a) Linear
- b) Planar
- c) Tetrahedral
- d) Pyramidal

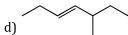
- 530. The substance used as an anti-knock compound is:
 - a) Tetraethyl lead
- b) Lead tetrachloride
- c) Lead acetate
- d) Ethyl acetate

531. Petroleum refining is:


petroleum


- a) Obtaining aromatic compounds from aliphatic compounds in
- b) Cracking of petroleum c) Purification of to get gaseous hydrocarbons
 - petroleum
- d) Distillation of petroleum to get different fractions
- 532. Zinc-copper couple that can be used as a reducing agent is obtained by:
 - a) Mixing zinc dust and copper gauze
 - b) Zinc coated with copper
 - c) Copper coated with zinc
 - d) Zinc and copper wires welded together
- 533. Which of the following hydrocarbons has the lowest dipole moment?



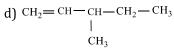

- c) $CH_3CH_2C \equiv CH$
- d) $CH_2 = CH C \equiv CH$

534.

- 535. A solution of sodium salt of fatty acid was electrolysed during Kolbe's reaction. The solution left after electrolysis is:
 - a) Richer in NaOH
- b) Richer in H₂SO₄
- c) Richer in sodium salt
- d) All of these
- 536. Sample of 2,3-dibromo-3-methylpentane is heated with zinc dust. The resulting product is isolated and heated with HI in the presence of phosphorus. Indicate which is the structure that represents the final organic product in the reaction?

$$CH_2 = CH - CH - CH_2 - CH_3$$

a)


$$CH_3$$
 $CH_3 = CH_2 - CH - CH_2 - CH_3$

b)

$$CH_3 = CH - CH_2 - CH_2$$

c)

- 537. Which compound does not give precipitate with ammoniacal silver nitrate solution?
 - a) $C_2H_5 C \equiv CH$

b) $CH_3 - C \equiv C - CH_3$

c) CH_3 d) Ph $- CH_2 - C \equiv CH$

$\begin{array}{c} | \\ CH_3 - CH - C \equiv CH \end{array}$

- 538. Hydroxylation of propyne in the presence of ${\rm HgSO_4/H_2SO_4}$ is initiated by the attack of:
 - a) Carbene
- b) Free radical
- c) Electrophile
- d) Nucleophile
- 539. Benzene vapour mixed with air when passed over $\rm V_2O_5$ catalyst at 775 K gives
 - a) Glyoxal
- b) Oxalic acid
- c) Maleic anhydride
- d) Fumaric acid
- 540. Kolbe's synthesis on electrolysis of sodium salt of butanoic acid gives :
 - a) *n*-hexane
- b) Isobutene
- c) Butane
- d) Ethene

541. Which among the following is aromatic?

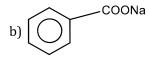
- 542. The neutral wax called Ozokerite found near petroleum well is a mixture of:
 - a) Solid halides
- b) Solid hydrocarbons
- c) Solid alcohols
- d) None of these

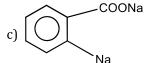
543. C_6H_5 + C-CN \longrightarrow A

Identify A:

$$C_6H_5$$
 C_1


b)
$$C_6H_5$$
 C_8


$$C_6H_5$$
 C_6H_5 C_6H_5


d) None of these

- 544. Which among the following are used as catalyst in cracking?
 - a) Oxides of Al
- b) Oxides of Cr, Mo
- c) Oxides of V
- d) All of these

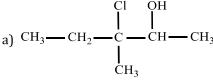
- 545. The general formula of a cycloalkane is
 - a) C_nH_n
- b) C_nH_{2n}
- c) $C_n H_{2n-1}$
- d) $C_n H_{2n+2}$
- 546. Toluene reacts, with excess of Cl₂ in presence of sunlight to give a product, which on hydrolysis followed by reaction with NaOH gives

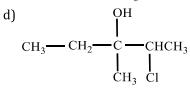
d) None of these

- 547. Which of the following alkanes can be easily sulphonated?
 - a) *n*-butane
- b) Isobutene
- c) *n*-pentane
- d) *n*-hexane
- 548. When propionic acid is treated with aqueous sodium bicarbonate, CO_2 is liberated. The 'C' of CO_2 comes from:
 - a) Methyl group
- b) Carboxylic group
- c) Methylene group
- d) Bicarbonate
- 549. 10mL of a certain hydrocarbon require 25mL of oxygen for complete combustion and the volume of CO₂ produced is 20mL. what is the formula of hydrocarbon?
 - a) C_2H_2
- b) C_2H_4
- c) CH_4

d) C_2H_6

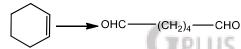
550. Which of the following compounds is the most stable?





- 551. The octane number of any fuel increases with:
 - a) Increase in *n*-heptane
 - b) Decrease in 2,2,4-trimethylpentane

- c) Increase in 2,2,4-trimethylpentane
- d) None of the above
- 552. 3-methyl-2-pentene on reaction with HOCl gives:

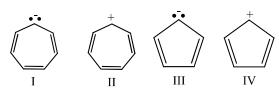


- 553. The reaction of propene with HOClproceeds *via* the addition of
 - a) Cl⁺ and OH⁻ in a single step

b) Cl⁺ in the first step

c) H⁺ in the first step

- d) OH⁻ in the first step
- 554. Select the reagent for the following reaction,


a) SeO_2

b) O_3 , Zn/H_2O

c) O_3 , $H_2O_2 - CH_3COOH$

d) PCC

- 555. The chemical reactivity of ethylene is due to:
 - a) Short carbon to carbon bond distance
 - b) High double bond energy
 - c) Trigonal planar structure
 - d) Presence of π -electrons
- 556. Which of the following species could be expected to exhibit aromatic character?

Select the correct answer from the following

- a) I and IV
- b) II and IV
- c) I and III
- d) II and III
- 557. Product formed when 1-butene is subjected to HBr in the presence of peroxide:
 - a) 1-bromobutane
- b) 2-bromobutane
- c) 1,1-dibromobutane
- d) 1,2-dibromobutane
- 558. Nitrobenzene can be prepared from benzene by using a mixture of concentrated $\rm HNO_3$ and concentrated $\rm H_2SO_4$. In the nitrating mixture, $\rm HNO_3$ acts as
 - a) Base
- b) Acid

- c) Reducing agent
- d) Catalyst

559. In the reaction sequence,

$$CH_3CH = CH_2 \xrightarrow{(i)O_3} Products Products will be$$

a) CH₃COCH₃

b) CH₃COCH₂OH

c) $CH_3COOH + HCOOH$

- d) $CH_3CHO + HCHO$
- 560. Petrol or gasoline used as an automobile fuel is a mixture of:
 - a) Hydrocarbons
 - b) Alcohols
 - c) Carbohydrates
 - d) Hydrocarbons and alcohols
- 561. In which of the following electron delocalisation is possible?

a)
$$CH_2 = CH - CH_2 - 0^{-1}$$

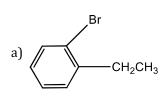
- c) $CH_2 = CH CH_2 CH = CH_2$
- d) None of the above
- 562. The major component of L.P.G. is:
 - a) Methane
- b) Ethane
- c) Propane
- d) Iso-butane
- 563. Which of the following alkenes will yield 2-butanone on ozonolysis followed by the reaction with Zn/H_2O ?
 - a) 2-methyl-2-hexene

b) 2-methyl-1-hexene

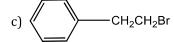
c) 3,4-dimethyl-3-hexene

- d) 2,3-dimethyl-3-hexene
- 564. Acetylene and ethylene reacts with alk, KMnO₄ to give:
 - a) Oxalic acid and formic acid
 - b) Acetic acid and ethylene glycol
 - c) Ethyl alcohol and ethylene glycol
 - d) None of the above
- 565. According to Markownikoff's rule, what will be the major product of reaction

$$CH_2 = CH - CH_3 \xrightarrow{HBr} ?$$
Br


a)
$$\mid$$
 CH₃ – CH – CH₃


b)
$$Br - CH_2 - CH_2 - CH_3$$


c)
$$CH_2 = CH - CH_2Br$$

d)
$$CH_2 = C = CH_2$$

- 566. Carbon black, used in making printing ink is obtained by the oxidation of:
 - a) Acetylene
- b) Benzene
- c) Methane
- d) CCl₄
- 567. Ethylbenzene with bromine in presence of FeBr₃, predominantly gives

- d) Br——CH₂CH₃
- 568. Which reaction produces acrylonitrile ($CH_2 = CHCN$)?
 - a) Ethyne $\frac{HCN}{Ba^{2+}}$
- b) Acrylic acid \xrightarrow{KCN}
- c) Ethyne $\stackrel{\text{KCN}}{\longrightarrow}$
- d) Ethyne $\stackrel{\text{HOCI}}{\longrightarrow}$

569. Gasoline is:

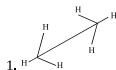
- a) C_3H_8 to C_6H_{14}
- b) C_7H_{16} to $C_{10}H_{22}$
 - c) C_7H_{24} to $C_{14}H_{34}$
- d) $C_{17}H_{36}$ to $C_{21}H_{50}$
- 570. Which of the following gives methane [CH₄] on hydrolysis?
 - a) Fe_3O_4
- b) Al_2O_3

- 571. The compound $(CH_3)_2CH$ CHCl— CH_3 reacts with alcoholic KOH to give the following alkene:
 - a) $(CH_3)_2CH-CH = CH_2$
 - b) $CH_3 CH = C = CH_2$
 - c) $CH_3 CH_2 CH = CHCH_3$
 - d) $(CH_3)_2C = CH CH_3$
- 572. A hydrocarbon reacts with HI to give (X) which on reacting with aqueous KOH forms (Y). Oxidation of (Y) gives 3-methyl-2-butanone. The hydrocarbon is:

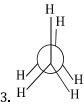
- 573. Pure acetylene has sweet ethereal smell while impure smells like garlic due to presence of:
 - a) NH_3

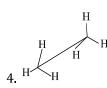
b) PH₃

c) AsH₃


- 574. An alkyl halide by formation of its Grignard reagent and heating with water yields propane. What is the original alkyl halide?
 - a) Methyl iodide
- b) Ethyl iodide
- c) Ethyl bromide
- d) Propyl bromide
- 575. 1-propyne on treatment with dilute H₂SO₄ in presence of HgSO₄ gives acetone. The change is due to:
 - a) Hyperconjugation
- b) Resonance
- c) Tautomerism
- d) None of these
- 576. O₂ required for complete oxidation of 1 litre of ethane at NTP is:
 - a) 3.5 litre
- b) 0.156 mole
- c) 5.00 g
- d) All of these

577. In the following sequence the product D is,


$$CH \equiv CH \xrightarrow{HBr} A \xrightarrow{HBr} B \xrightarrow{KOH \text{ ale.}} C \xrightarrow{NaNH_2} D$$


- a) Ethanol
- b) Ethane
- c) Ethyne
- d) Ethanal
- 578. Which of the following compounds react with HBr obeying Markownikoff's rule?
 - a) $CH_2 = CH_2$

- 579. Liquid hydrocarbon can be converted to a mixture of gaseous hydrocarbon by:
 - a) Oxidation
 - b) Cracking
 - c) Hydrolysis
 - d) Distillation under reduced pressure
- 580. Two jars A and B are filled with hydrocarbons. Br_2 in CCl_4 is added to these jars. A does not decolourise the Br_2 solution but B decolourises. What are A and B?
- a) Alkane and alkene
- b) Alkene and alkane
- c) Alkene and alkyne
- d) None of these
- 581. In the following structures which two forms are staggered conformation of ethane?

- a) 1 and 4
- b) 2 and 3
- c) 1 and 2
- d) 1 and 3
- 582. A mixture of ethane, ethene and ethyne is passed through ammoniacal $AgNO_3$ solution. The gases which remain unreacted are:
 - a) Ethane and ethene
- b) Ethane and ethyne
- c) Ethene and ethyne
- d) Ethane only

583. In the reaction,

$$\mathsf{C_6H_5CH_3} \xrightarrow{\mathsf{Oxidation}} A \xrightarrow{\mathsf{NaOH}} B \xrightarrow{\mathsf{Soda\,lime}} \mathcal{C}$$

The product *C* is

- a) C_6H_5OH
- b) C_6H_6
- c) C₆H₅COONa
- d) C₆H₅ONa

584.
$$A \stackrel{\text{(I) BH}_3.\text{THF}}{\leftarrow} \text{CH}_3 \text{C} \equiv \text{CH} \frac{\text{HgSO}_4}{\text{H}_2\text{SO}_4} B$$

Identify A and B

a) CH₃CHO, CH₃COCH₃

b) CH₃CH₂CHO, CH₃COCH₃

c) CH₃CH₂CHO, CH₃COCH₂CH₃

d) HCHO, CH₃COCH₃

- 585. Cyclobutadiene is said to be
 - a) aromatic
- b) aliphatic
- c) non-aromatic
- d) None of these

- 586. Acetylene reacts with hypochlorous acid to form
 - a) Cl₂CHCHO
- b) ClCH₂COOH
- c) Cl₃COCl
- d) ClCH₂CHO
- 587. To enable easy detection of gas leakage from cylinders, the substance added to L.P.G. is:
 - a) Glycols
- b) Phenols
- c) Thioalcohols
- d) Glycerols

- 588. Octane no. of 2,3,3-trimethylbutane has been assumed to be:
 - a) 100

b) -45

c) 124

d) Zero

- 589. C_4H_6 may contain
 - a) One double bond
- b) Two double bond
- c) One triple bond
- d) Both (b) and (c)
- 590. Which of the following compounds can form metallic derivatives?
 - a) Ethane
- b) Propyne
- c) 2-butyne
- d) 2-butene

- 591. Increasing order of volatility of C₂H₆, C₂H₄, C₂H₂ and C₆H₆ is:
 - a) C_6H_6 , C_2H_6 , C_2H_4 , C_2H_2 b) C_2H_2 , C_2H_4 , C_2H_6 , C_6H_6 c) C_6H_6 , C_2H_2 , C_2H_4 , C_2H_6 d) C_2H_2 , C_2H_6 , C_2H_4 , C_6H_6
- 592. Octane no. of a fuel can be increased by:
 - a) Isomerism
- b) Alkylation
- c) Reforming
- d) All of these

- 593. 1-propanol on dehydration with H₂SO₄ produces:
 - a) $CH_3 CH = CH_2$
 - b) $CH_3 CH = CH CH_3$
 - c) CH₃CH₂CH₂OCH₂CH₂CH₃
 - d) $CH_3CH_2CH_2CH_2CH = CH_2$
- 594. Propadiene, C₃H₄ molecule contains:
 - a) Two sp^2 and one sp-hybrid carbon
 - b) One sp^2 and two sp-hybrid carbons
 - c) One sp^2 and three sp-hybrid carbons
 - d) None of the above
- 595. Catalyst used in dimerization of acetylene to prepare chloroprene is:
 - a) $HgSO_4 + H_2SO_4$
- b) Cu₂Cl₂
- c) $Cu_2Cl_2 + NH_4Cl$
- d) $Cu_2Cl_2 + NH_4OH$

- 596. Cyclopentene on treatment with alkaline KMnO₄ gives:
 - a) Cyclopentanol

GPLUS EDUCATION

- b) trans-1,2-cyclopentanediol
- c) cis-1,2-cyclopentanediol
- d) 1:1 mixture of cis-and trans-1,2-cyclopentanediol

597.
$$C_7H_8 \xrightarrow{3Cl_2, Heat} A \xrightarrow{Fe/Br_2} B \xrightarrow{Zn/HCl} C$$

Here, the compound *C* is

- a) 3-bromo 2,4,5,6-trichlorotoluene
- b) o-bromo toluene

c) p-bromo toluene

d) m-bromo toluene

- 598. Naphalene is an example of
 - a) Polynuclear hydrocarbon

b) alicyclic compound

c) heterocyclic compound

- d) aliphatic compound
- 599. Which of the following will give *trans*-diols?

a) >c=c<
$$\frac{1. \text{ KMnO}_4}{2. \text{ H}_2\text{O}}$$

$$c = c < \frac{1. \text{ OsO}_4}{2. \text{ Na}_2 \text{SO}_3}$$

c)
$$\frac{1. \text{ OsO}_4, 25^{\circ}\text{C}}{2. \text{ Na}_2\text{SO}_3}$$

d)
$$\frac{35\% \text{ H}_2\text{O}_2}{\text{HCO}_2\text{H}, 25^{\circ}\text{C}}$$

- 600. Benzene can react with
 - a) Bromine water
- b) HNO₃
- c) H_2O

- d) CH₃OH
- 601. A mixture of methane and steam when passes over nickel supported on alumina catalyst at 725°C gives:
 - a) CH₃OH
- b) CO_2 and H_2
- c) CO and H₂
- d) None of these
- 602. In which reaction addition takes place according to Markownikoff's rule?
 - a) $CH_3CH = CH_2 + Br_2 \rightarrow$
 - b) $CH_3CH = CH_2 + HBr \rightarrow$
 - c) $CH_2 = CH_2 + HBr \rightarrow$
 - d) $CH_3CH = CHCH_3 + Br_2 \rightarrow$
- 603. Paraffin wax is:
 - a) Ester

- d) Saturated hydrocarbon

hydrocarbon

- 604. Propyne when passed through a hot iron tube at 400°C produces
 - a) Benzene

b) Methyl benzene

c) Dimethyl benzene

- d) Trimethyl benzene
- 605. Which of the following is called Marsh gas?
 - a) C_2H_4
- b) C_2H_6
- c) C_2H_2
- d) CH₄

- 606. Which can be easily oxidized?
 - a) Alkene
- b) 1-alkyne
- c) Alkane
- d) Benzene
- 607. *n*-butane and isobutene, which have same number of hydrogen and carbon atoms in their molecules, boil at different temperatures because:
 - a) *n*-butane is much hotter
 - b) Their volumes are different
 - c) Isobutene is an alkene
 - d) Their atoms are not having the same carbon chain
- 608. Common oxidizing agents used in organic chemistry are:
 - a) Fenton's reagent
- b) Osmium tetraoxide
- c) Acidified KMnO₄
- d) Alkaline KMnO₄

- 609. Acetylenic hydrocarbons are acidic because:
 - a) Sigma electron density of C—H bond in acetylene is nearer a carbon which has 50% s-character
 - b) Acetylene has only one hydrogen atom at each carbon atom
 - c) Acetylene contains least number of hydrogen atoms among the possible

	the class of alkynes with for		
610. Butene -1 may be conver	ted to butane by the reaction	on with:	
a) Zn–Hg	b) Pd–H ₂	c) Zn–HCI	d) Sn–HCI
611. Number of acidic hydrog	gen atom in butyne-1 is:		
a) 2	b) 3	c) 1	d) 4
612. Propene on reaction with	h methylene iodide in prese	nce of Zn-Cu couple gives:	
a) Cyclopropane	b) Cyclopropene	c) Methyl cyclopropane	d) Cyclobutene
613. Addition of O ₂ on ethyler	ne in presence of Ag at 200°	C forms:	
a) Epoxy ethane	b) Oxiranes	c) Cyclic ethers	d) All of these
614. The carbon-carbon bo	nd distance in benzene is		,
a) Longer than a C – C		b) Longer than a $C = C$	double bond
c) Shorter than a $C = C$	•	d) Shorter than a $C \equiv C$	
615. Method of converting his			-
a) Polymerisation	b) Isomerisation	c) Cracking	d) Condensation
616. The mechanism of Wurtz		c) Gracking	d) Condensation
a) Free radical	b) Carbocation	c) Carbanion	d) None of these
617. The most important energy	•	•	u) None of these
a) C_2H_4	b) C_2H_2	c) CH ₄	4) II C
618. PVC is a polymer of:	0) 0_2 11 $_2$	c) G11 ₄	d) H ₂ S
a) $CH_2 = CH_2$	b) ClCH ₂ — CH ₂ Cl	c) CH ₂ —CHCl	d) $Cl - C = C - Cl$
		· -	,
619. Cyclohexene on ozono			-
Compound <i>E</i> on furthe	r treatment with aqueous	s KUH yielas compound <i>I</i>	\mathcal{L} Compound \mathcal{L} is
а) СНО	b)CHO	с) Соон	d) соон соон
620. The flash point in India i	s fixed at:		
a) 44°C	b) 35°C	c) 22.8°C	d) 30°C
621. Lindlar's catalyst is:	OLFO? EDO!	MITOM	
a) Pd- CaCO ₃ deactivated	d by lead acetate		
b) Pd — BaSO ₄	·		
c) Pd			
d) None of the above			
622. The energy of π -bond in	kcal is about :		
a) 36	b) 50	c) 74	d) 140
623. Ozonolysis (O ₃ , H ₂ O) of,	•	•	•
CH_3 — CH — $C\equiv C$ — CH_3 gives:			
CH ₃	001		
CH_3 — $CHCOOH + CH_3C$	OOH		
a) I CH ₃			
CH ₃ —CHCHO + CH ₃ Cl	HO		
b)			
CH ₃			
CH_3 — $CHCHO + CH_3CO$	ООН		
c)			
CH ₃			
d) None of the above			
a, 1,0110 of the above			

624. What is the end product of the following sequences of operations?

$CaC_2 \xrightarrow{H_2O} A \xrightarrow{Dil.H_2}$	$a \to B \xrightarrow{\text{Ni}} B \xrightarrow{\text{Ni}} C$		
a) Methyl alcohol	b) Aceta		
The order of relative acidic strength			
a) Water>propyne:	>ethyne		

	a) Methyl alcohol	b) Acetaldehyde	c) C ₂ H ₅ OH	d) C_2H_4
625.	The order of relative acidi	c strengths of water, ethyn	e and propyne is:	
	a) Water>propyne>ethyr	ne		
	b) Propyne>ethyne>wate	er		
	c) Water>ethyne>propyr	ne		
	d) Ethyne>water>propyr	ne		
626	Reaction of trans-2-nheny	vl-1-hromocyclonentane o	n reaction with alcoholic K()H produc

- a) 4-phenylcyclopentene
 - b) 2-phenylcyclopentene
 - c) 1-phenylcyclopentene
 - d) 3-phenylcyclopentene
- 627. Ethylene reacts with slphur monochloride to give:
- b) Mustard gas a) Phosgene c) Ethylene chloride d) None of these 628. The dihalogen derivative 'X' of a hydrocarbon with three carbon atoms reacts with alcoholic KOH and produces another hydrocarbon which forms a red precipitate with ammoniacal Cu_2Cl_2 . 'X' gives an aldehyde on reaction with aqueous KOH. The compound *'X'* is
 - a) 1,3-dichloropropane b) 1,2-dichloropropane c) 2,2-dichloropropane d) 1,1-dichloropropane
- 629. Ethylene may be prepared by the dehydration of:
 - a) Ethyl alcohol b) Methyl alcohol c) Acetic acid d) Oxalic acid
- 630. Petroleum is formed by the chemical changes in: b) Vegetable matter a) Inorganic matter c) Animal matter d) Both (b) and (c)
- 631. Common dehydrating agents for alkanes are:
- d) All of the above a) H_2SO_4 b) Al_2O_3 c) ZnCl₂ 632. The most stable conformation of butane is:
- b) Staggered c) Gauche a) Skew d) Eclipsed 633. A cyclic hydrocarbon molecule has all the carbon and hydrogen in a single plane. All the carbon-
- carbon bonds are of same length, less than 1.54Å, but more than 1.34Å. The C-c bond angle will be a) 109°28′ b) 100° c) 180° d) 120°
- 634. The product of acid catalysed hydration of 2-phenyl propene is:
 - a) 3-phenyl-2-propanol b) 1-phenyl-2-propanol c) 2-phenyl-2-propanol d) 2-phenyl-1-propanol
- 635. When C₂H₅, CH₄ and C₂H₄ passes through a test tube which have ammoniacal Cu₂Cl₂, find out which gas comes out unaffected from test tube?
- a) C_2H_2 and CH_4 b) C_2H_2 and C_2H_4 c) C₂H₄ and CH₄ d) C_2H_2
- 636. Benzene reacts with chlorine in sunlight to give a final product
- a) CCl₄ b) $C_6H_6Cl_6$ c) C_6Cl_6 d) C_6H_5Cl
- 637. When 2-butyne is treated with Pd BaSO₄; the product formed will be
- a) cis-2-butene b) trans-2-butene c) 1-butene d) 2-hydroxy butane 638. The overlapping of orbitals in benzene is of the type
- c) $sp^2 sp^2$ d) sp^3sp^3 b) p - pa) sp - sp639. The product obtained when methyl magnesium bromide reacts with methyl alcohol is:
- d) Ethane a) Acetone b) Alcohol c) Methane 640. The treatment of benzene with benzoyl chloride in the presence of AlCl₃ gives
- b) Benzophenone c) Diphenyl a) Benzaldehyde d) Cyclohexane
- 641. Which of the following have delocalised electron?

- a) Benzene
- b) Cyclohexane
- c) CH₄

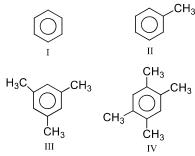
d) C_2H_6

642. The IUPAC name of $CH_2 = CH - CH_2$ —group is:

a) Allyl

- b) Propyl
- c) Prop-2-enyl
- d) Prop-1-enyl

643. Which statement is correct?


- a) Low chemical reactivity of alkanes is due to strong C—C and C—H bonds
- b) Alkanes show characteristic substitution reactions because they are saturated
- c) Reaction of alkanes with fluorine is explosive even in dark
- d) All of the above
- 644. Ease of sulphonation of alkanes is:

a)
$$3^{\circ}>2^{\circ}>1^{\circ}$$

c)
$$2^{\circ}>3^{\circ}>1^{\circ}$$

d)
$$3^{\circ} > 1^{\circ} > 2^{\circ}$$

645. Arrange the following in order of decreasing boiling point

- a) I > II > III > IV
- b) IV > III > II > I c) I > III > IV > II d) II > III > IV > IV

646. The product *B* is:

$$CH_3. CH_2. C = CH + HCI \rightarrow B \stackrel{HI}{\rightarrow} C$$
a)
$$CH_3. CH_2. CH_2. CH_2. CH_1$$
b)
$$CH_3. CH_2. CH_2. CH_2. CH_2. CH_2. CH_2. CH_2$$
c)
$$CH_3. CH_2. CH_2. C \equiv CH$$
d)
$$CH_3. CH_2. CH_2.$$

- 647. *n*-propyl bromide on treating with alcoholic KOH produces
 - a) Propane
- b) Propene c) Propyne
- d) Propanol
- 648. An unsaturated hydrocarbon upon ozonolysis gives one mole each of formaldehyde, acetaldehyde and methylglyoxal(CH₃COCHO). The structure of the hydrocarbon is
 - a) $CH_2 = CH CH_2 CH = CH_2$

b) $CH_2 = CH - C(CH_3) = CH - CH_3$

c) $(CH_3)_2C = CH - CH_3$

- d) $CH_3 CH = C(CH_3) CH_3$
- 649. Fischer-Tropsch process is used in the manufacture of:
 - a) Synthetic petrol
- b) Ethanol
- c) Benzene
- d) Ethanoic acid
- 650. 2-methylpropene is isomeric with butane-1. They can be distinguished by:
 - a) Baeyer's reagent
- b) Ammoniacal AgNO₃
- c) Br₂ solution
- d) 0_3 , Zn/H_2O
- 651. Acetylene reacts with 42% H₂SO₄ containing 1% HgSO₄ to give:
 - a) C₂H₅HSO₄
- b) CH₃CHO
- c) HCHO
- d) $CH_2 = CH_2$

- 652. The simplest alkyne is:
 - a) CH

b) CH_2

- d) C_2H_4
- 653. A Friedel-Crafts reaction of benzene with chloroform produces
 - a) C₆H₅CHCl₂

- 654. An alkene, obtained by the dehydration of an alcohol (A), on ozonolysis gives two molecules of acetaldehyde for every molecule of alkene. The alcohol (A) is:

	a) CH ₃ CH ₂ CH ₂ OH	b) CH ₃ CH ₂ OH	c) $CH_3CH = CHCH_2OH$	Gplus Education CH ₃ CH ₂ CHCH ₃ d)
655	_	annulenes is <i>anti-</i> aroma	tic?	ОН
656		b) Cyclobutadiene e isomers of alkane with f		d) Cyclooctatetraene
657	a) 2 . Which statement is co	b) 3	c) 4	d) 5
657	 a) Alkanes from CH₄ to b) Alkanes from C₅H₁₂ c) All alkanes are light 	o ${ m C_4H_{10}}$ are colourless ode to ${ m C_{17}H_{36}}$ are colourless lier than water		oms
658	. Which compound does	s not decolourize bromine	e dissolved in carbon tetrachlo	ride?
	a) C_2H_2	b) C ₃ H ₆	c) C_6H_6	d) C_2H_4
659	The principal organic p $CH_2 = CH(CH_2)_8COOH$ a) $CH_3 - CHBr(CH_2)_8CO$ b) $CH_2 = CH(CH_2)_8CO$ c) $CH_2BrCH_2(CH_2)_8CO$ d) $CH_2 = CH(CH_2)_7CH$	СООН Вr ООН	ction,	
660			bromo-3-chlorocyclobutane	e reacts with two
	equivalents of metall			
	a) Br	b)CI	c)	d)
661		$C \equiv C - CH_3 \xrightarrow{\text{Na in}} [B]$		
	[A] and [B] are respect a) cis, trans-2-buten		b) Both <i>trans-</i> 2-buten	
	c) <i>trans</i> , <i>cis</i> -2-buten		d) Both <i>cis</i> -2-butene	e
662			out does not react withAgNO	. 2
002	a) C_2H_6	b) CH_4	c) C ₂ H ₄	
663	Octane number 116 is	-	C_1 C_2 C_3	d) C ₂ H ₂
003	a) 2,2,2-trimethyl pent	=		
	b) 2,3,4-trimethyl pent			
	c) 2,2,3-trimethyl buta			
	d) 2,2,4-trimethyl buta			
664	. Which of the following	statements is incorrect?		
	a) Acetylene is explosi	ve above 2 atm		
	b) It is transported by	dissolving in acetone		
	c) It has unpleasant ga			
	d) It is used in the man			
665		from ethyl bromide is a c	ase of:	
	a) Addition reaction			
	b) Substitution reactio	n		

GPLUS EDUCATION

a) $R_2C = CR_2$

a) Addition reaction b) Substitution reaction c) Elimination reaction d) Rearrangement reaction 666. The most stable alkene is,

WEB: WWW.GPLUSEDUCATION.ORG

c) $CH_2 = CH_2$

b) RCH = CHR

667. Ethylene can be prepared by electrolysis of an aqueous solution of:

PHONE NO: 8583042324 Page | 53

d) $RCH = CR_2$

a) Sodium acetate	b) Sodium succinate	-,	d) Sodium propionate
668. HBr reacts with CH_2 =	=	ydrous conditions at roo	m temperature to give
a) CH ₃ CHO and CH ₃ Br	•	b) BrCH ₂ CHO and CH	30H
c) $BrCH_2 - CH_2 - OCI$	\mathcal{A}_3	d) H ₃ C – CHBr – OCH	H_3
669. Identify Z in the following	ng series?		
$CH_2 = CH_2 \xrightarrow{\text{HBr}} X \xrightarrow{\text{Hydroly}}$	$\xrightarrow{\text{rsis}} Y \xrightarrow{\text{Na}_2\text{CO}_3} Z$ $I_2 \text{ excess}$		
a) C ₂ H ₅ I	b) CHI ₃	c) CH ₃ CHO	d) C ₂ H ₅ OH
670. Reactive species in ha	logenation of benzene i	n cold and dark	
a) Cl°	b) Cl ⁺	c) Cl ⁻	d) None of these
671. An organic alkadiene	on reductive ozonolysis	produces	
(i)acetaldehyde	v	•	
(ii)acetone			
(iii)2-methylpropane-	-1 3 - dial		
The formula of alkadio			
$CH_3C = CHCHCH =$		CU CUCU — CCU -	– СПСП
	CHCH3	$CH_3CHCH = CCH =$	- GIGII3
a)		b)	
CH ₃ CH ₃		CH ₃ CH ₃	
$CH_3C = CHCHC = C$	CHCH ₃	$CH_3CH_2CHCH = C$	$HC = CH_2$
c)		d)	
CH_3 CH_3		CH ₃	CH_3
672. Synthetic petrol and ker			
a) 0 ₂	b) H ₂	c) N ₂	d) CO ₂
673. A hydrocarbon containi	-		_
= =		n. The hydrocarbon in que	
a) Ethane	b) Acetylene	c) Ethylene	d) None of these
674. Acetylene can be conver		The state of the s	
a) Na, <i>RX</i>	b) <i>R</i> Mg <i>X</i> , <i>R X</i>	c) Either of these two	d) None of these
675. At low temperature, the		ar bromine to $H_2C = CH$	$CH_2 - C \equiv CH \text{ gives:}$
a) $CH_2 = CH - CH_2 - CH_2$			
b) BrCH ₂ — CHBr— CH ₂			
c) $H_2C = CH - CH_2 - C$	= =		
d) CH ₃ —CBr ₂ —CH ₂ —676. Which of the following s			
	edral geometry like an alk	ano	
	while naphthalene is not	anc	
c) Benzene and Cyclohe	-		
•	re like and alkane than an	alkene	
677. $CaC_2 + H_2O \rightarrow A \frac{H_2SO_4/I}{I}$		untene	
Identify A and B in the g	given reaction	1) (11 11100011	
a) C_2H_2 and CH_3CHO		b) CH ₄ and HCOOH	
c) C ₂ H ₄ and CH ₃ COOH	+ d C	d) C ₂ H ₂ and CH ₃ COOH	
678. The correct boiling point		nyurocardons is:	
a) Alkyne>alkane>alke			
b) Alkane>alkene>alky c) Alkyne>alkene>alka			
d) Alkene>alkyne>alka			
uj minelie/alkylle/alka	IIC		

Identify A and B

$$\text{b)} \\ \\ \bigcirc \text{CH} \\ = \text{CH} \\ \\ \\ \bigcirc \text{COOH} \\$$

$$d$$
) \sim CH=CH- $<$ $>$ $<$ \sim CHO

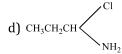
- 680. Electrolysis of cold concentrated aqueous solution of potassium methyl succinate yields:
 - a) Ethane
- b) Ethyne
- c) Propene
- d) Ethane-1,2-diol
- 681. An alkene gives two moles of HCHO, one mole of CO₂ and one mole of CH₃COCHO on ozonolysis. What is its structure?

a)
$$CH_2 = C = CH - CH_2 - CH_3$$

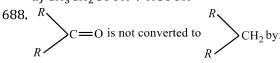
$$\begin{array}{c} \text{CH}_3 \\ \text{b)} \\ \text{CH}_2 = \text{CH} - \text{CH} - \text{CH} = \text{CH}_2 \\ \end{array}$$

$$CH_2 = C = C - CH_3$$
c)

d)
$$| CH_2 = C = C - CH = CH_2$$


- 682. Alkyl halides get converted to alkenes through:
 - a) Electrophilic substitution
- b) Nucleophilic addition c) Elimination reaction
- d) Hydrolysis
- 683. In the complete combustion of C_nH_{2n+2} , the number of oxygen moles required is:
 - a) $\left(\frac{n}{2}\right)$ O₂

- 684. When $CH_3CH_2CHCI_2$ is treated with $NaNH_2$ the product formed is:


a)
$$CH_3CH = CH_2$$

b)
$$CH_3$$
— $C \equiv CH$

- 685. Cycloalkanes are isomeric with
 - a) Alkanes
- b) Alkenes
- c) Alkynes
- d) Arenes
- 686. Which gives only one monosubstitution product on chlorination?
- b) Neopentane
- c) Isopentane
- d) *n*-butane
- 687. The products obtained via oxymercuration $(HgSO_4 + H_2SO_4)$ of 1-butyne would be:
 - a) CH₃CH₂COCH₃
 - b) CH₃CH₂CH₂CHO
 - c) $CH_3CH_2CHO + HCHO$
 - d) $CH_3CH_2COOH + HCOOH$

- a) Wolff-Kishner reaction b) Clemmensen reduction c) Red P+HI at 200°C
 - d) Wurtz reaction
- 689. The presence of the chlorine atom on benzene ring makes the second substituent enter at a position
 - a) ortho
- b) meta
- c) para
- d) ortho/para
- 690. Two organic compounds (A) and (B) both containing only carbon and hydrogen, on quantitative analysis gave the same percentage composition by weight

$C = \left(\frac{12}{12}\right) \times 100\%$, H	$H = \left(\frac{1}{13}\right) \times 100\%$		
A decolourises brom	ine water but <i>B</i> does not.	A and B respectively are	
a) C_2H_2 and C_6H_6 691. Which of the following	b) C_6H_6 and C_2H_2 g compounds react with, an a	<i>y L</i> 1 <i>L</i> 0	
a) ethane	b) Ethene	c) 1-butyne	d) 2-butyne
692. Aromatisation of n -h	neptane by passing over (A	$Al_2O_3 + Cr_2O_3$) catalyst at	t 773 K gives
a) Benzene	b) Toluene	c) Mixture of both	d) Heptylene
693. In a mixture of <i>n</i> -hexa cetane number is:	decane and $lpha$ -methylnaphth	nalene the percentage of the	latter is 10.The value of
a) 110	b) 90	c) 10	d) Zero
694. Addition of bromine to	1,3-butadiene gives:		
a) 1,2-addition produc	_		
b) 1,4-addition produc	-		
c) Both 1,2 and 1,4-ad	dition products		
d) No reaction			
-	H. This mode of reduction ca		DAIL CAL
a) NaBH ₄	b) Na + Alcohol	c) LiAlH ₄	d) All of these
696. A Wittig reaction with		1.) 4.1 1 1 6 11	. 1
a) Ketone compound		b) A long chain fatty ac	cid
c) Olefin compound	1 .1 .11 .11	d) Epoxide	. 11
	on heating with metallic		
a) Ethene	b) Ethyene	c) 2-butene	d) 1-butene
	on of ethylene dibromide is l	-	_
a) Ethane	b) Ethylene	c) Butane	d) Isobutene
699. Octane number is: a) Number of carbon a	atoms in octano		
	es of octane formed in crack	ing of 1 Ng of gasoline	
c) Number of hydroge		ing of flog of gasonife	
	enting standard rating of fue	l	
-	ition containing sodium acet		is electrolysed we get:
a) Ethane	b) Propane	c) Butane	d) All of these
701. Which one of the following	lowing methods is neither	meant for the synthesis i	nor for separation of
amines?			
a) Curtius reaction	b) Wurtz reaction	c) Hofmann method	d) Hinsberg method
702. Vic-dihalide on treatm	ent with zinc dust gives:		
a) Alkane	b) Alkene	c) Alkyne	d) All of these
703. Identify the substitu	te group, that acts as <i>orth</i>	o – para director, during	g electrophilic substitution
in aromatic compou	nds.		
a) – NH ₂	b) – NO ₂	c) – SO ₃ H	d) N ₂
704. Order of acidity of H ₂ 0), NH ₃ and acetylene is:		
a) $NH_3 > CH \equiv CH >$	H_2O		
b) $H_2O > NH_3 > CH \equiv$			
c) $H_2O > CH \equiv CH >$	-		
d) $NH_3 > H_2O > CH \equiv$			
705. $C_2H_5I + C_5H_{11}I + 2Na$	$\xrightarrow{\text{Editor}} C_2 H_5 - C_5 H_{11} + 2 \text{Nal}$		
The above equation re	nresents:		
a) Hofmann's reaction	_		

b) Dow's reaction

- c) Wurtz synthesis
- d) Reimer-Tiemann's reaction
- 706. Identify Z in the sequence,

$$\begin{array}{c} \text{CH}_{3} - \text{CH}_{2} - \text{CH} = \text{CH}_{2} \xrightarrow{\text{HBr/H}_{2}O_{2}} \text{Y} \xrightarrow{\text{C}_{2}\text{H}_{5}O^{-}-\text{Na}^{+}} \text{Z}: \\ \text{CH}_{3} - \text{CH} - \text{CH}_{2} - \text{O} - \text{CH}_{2} - \text{CH}_{3} \\ \text{a)} & | \\ \text{CH}_{3} \\ \text{CH}_{3} - \text{CH}_{2} - \text{CH} - \text{O} - \text{CH}_{2} - \text{CH}_{3} \\ \text{b)} & | \\ \text{CH}_{3} \end{array}$$

- c) $CH_3 (CH_2)_3 0 CH_2 CH_3$
- d) $CH_3 (CH_2)_4 O CH_3$
- 707. Which will give cyclooctyne when treated with base?
 - a) 1,2-dibromocyclobutane
 - b) 1,1-dibromocyclobutane
 - c) 1,1-dibromocyclooctane
 - d) 1,2-dibromocyclopropane
- 708. The final product in following sequence of reaction is

$$\mathsf{CH} \equiv \mathsf{CH} \xrightarrow{\mathsf{NaNH}_2} A \xrightarrow{\mathsf{CH}_3\mathsf{Br}} B$$

a) $CH_2 = CH - CH = CH_2$

b) $HC \equiv C - CH_3$

c) $CH_2 = CH - CH_3$

- d) $CH_3 CH_2 CH_3$
- 709. What are the products obtained upon the ozonolysis of pent-2-ene?
 - a) CH₃CH₂CHO
- b) CH₃CHO
- c) CH₃COCH₃
- d) Both (a) and (b)

- 710. Addition of halogen acid occurs at slowest rate in:
 - a) $CH_2 = CHCl$
- b) $CH_2 = CH_2$
- c) $CH_3 CH = CH_2$
- d) $(CH_3)_2C = CH_2$
- 711. Benzyl chloride (C₆H₅CH₂Cl) can be prepared from toluene by chlorination with
 - a) SO_2Cl_2
- b) SOCl₂ c) Cl₂

- d) NaOCl
- 712. The Markownikoff's rule is the best applicable to the reaction between
 - a) $C_2H_4 + HCl$
- b) $C_3H_6 + Br_2$
- c) $C_3H_6 + HBr$
- d) $C_3H_8 + Cl_2$
- 713. Which of the following acid reacts to reverse the Markownioff's rule?
 - a) HCl

b) HBr

c) HF

- d) HI
- 714. The addition of HOCl on alkenes in presence of strong acids to form halohydrins proceeds via formation of:
 - a) Chloronium ion
- b) Carbocation
- c) Chloro carbocation
- d) None of these
- 715. On treatment with chlorine in presence of sunlight, toluene gives the product
 - a) o-chloro toluene

b) 2,5-dichloro toluene

c) p-chloro toluene

- d) Benzyl chloride
- 716. The most oxidized form of hydrocarbon RCH₃ is:
 - a) CO₂

- b) RCHO
- c) RCOOH
- d) RCOCOOH

- 717. Ethylene is used for:
 - a) Ripening of food
 - b) Preparing ethylene oxide
 - c) For preparing ethylene chloride
 - d) All are correct